多項式行列の行列式
(matrix/polynomial-matrix-determinant.hpp)
- View this file on GitHub
- Last update: 2024-05-03 21:06:15+09:00
- Include:
#include "matrix/polynomial-matrix-determinant.hpp"
多項式行列の行列式
TODO : 清書・使い方を書く
- このライブラリではラグランジュ補間を用いて$\mathrm{O}(N^3 d)$で解いているが他にも解き方はある
-
noshiさんのブログ
- 除算にユークリッドの互除法を利用すれば行列式を計算できることと、線形変換を利用してさらに計算量を落とせることが説明されている
-
hitonanodeさんのブログ
- $\mod x^m$が欲しい場合はFPSで$\mathrm{O}(N^3 m \mathrm{polylog} m)$くらいで解ける
- ただし常にpivotに対して逆元が存在する必要があり、これは$\mod x$の行列が行列式を持つことと同値
- リンク先の問題では「連結グラフに行列木を適用している」「辺のあるところに重み$1$の辺を張る」という事実から逆元の存在が示せる
Depends on
多項式/形式的冪級数ライブラリ (fps/formal-power-series.hpp)
Multipoint Evaluation (fps/multipoint-evaluation.hpp)
fps/polynomial-interpolation.hpp
matrix/gauss-elimination.hpp
matrix/inverse-matrix.hpp
行列ライブラリ (matrix/matrix.hpp)
Required by
Verified with
Code
#pragma once
#include "../fps/formal-power-series.hpp"
#include "../fps/polynomial-interpolation.hpp"
#include "matrix.hpp"
template <typename mint>
FormalPowerSeries<mint> PolynomialMatrixDeterminant(
const Matrix<FormalPowerSeries<mint>> &m) {
int N = m.size();
int deg = 0;
for (int i = 0; i < N; ++i) deg += max<int>(1, m[i][i].size()) - 1;
vector<mint> xs(deg + 1);
vector<mint> ys(deg + 1);
Matrix<mint> M(N);
for (int x = 0; x <= deg; x++) {
xs[x] = x;
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j) M[i][j] = m[i][j].eval(x);
ys[x] = M.determinant();
}
return PolynomialInterpolation<mint>(xs, ys);
}
/**
* @brief 多項式行列の行列式
* @docs docs/matrix/polynomial-matrix-determinant.md
*/
#line 2 "matrix/polynomial-matrix-determinant.hpp"
#line 2 "fps/formal-power-series.hpp"
template <typename mint>
struct FormalPowerSeries : vector<mint> {
using vector<mint>::vector;
using FPS = FormalPowerSeries;
FPS &operator+=(const FPS &r) {
if (r.size() > this->size()) this->resize(r.size());
for (int i = 0; i < (int)r.size(); i++) (*this)[i] += r[i];
return *this;
}
FPS &operator+=(const mint &r) {
if (this->empty()) this->resize(1);
(*this)[0] += r;
return *this;
}
FPS &operator-=(const FPS &r) {
if (r.size() > this->size()) this->resize(r.size());
for (int i = 0; i < (int)r.size(); i++) (*this)[i] -= r[i];
return *this;
}
FPS &operator-=(const mint &r) {
if (this->empty()) this->resize(1);
(*this)[0] -= r;
return *this;
}
FPS &operator*=(const mint &v) {
for (int k = 0; k < (int)this->size(); k++) (*this)[k] *= v;
return *this;
}
FPS &operator/=(const FPS &r) {
if (this->size() < r.size()) {
this->clear();
return *this;
}
int n = this->size() - r.size() + 1;
if ((int)r.size() <= 64) {
FPS f(*this), g(r);
g.shrink();
mint coeff = g.back().inverse();
for (auto &x : g) x *= coeff;
int deg = (int)f.size() - (int)g.size() + 1;
int gs = g.size();
FPS quo(deg);
for (int i = deg - 1; i >= 0; i--) {
quo[i] = f[i + gs - 1];
for (int j = 0; j < gs; j++) f[i + j] -= quo[i] * g[j];
}
*this = quo * coeff;
this->resize(n, mint(0));
return *this;
}
return *this = ((*this).rev().pre(n) * r.rev().inv(n)).pre(n).rev();
}
FPS &operator%=(const FPS &r) {
*this -= *this / r * r;
shrink();
return *this;
}
FPS operator+(const FPS &r) const { return FPS(*this) += r; }
FPS operator+(const mint &v) const { return FPS(*this) += v; }
FPS operator-(const FPS &r) const { return FPS(*this) -= r; }
FPS operator-(const mint &v) const { return FPS(*this) -= v; }
FPS operator*(const FPS &r) const { return FPS(*this) *= r; }
FPS operator*(const mint &v) const { return FPS(*this) *= v; }
FPS operator/(const FPS &r) const { return FPS(*this) /= r; }
FPS operator%(const FPS &r) const { return FPS(*this) %= r; }
FPS operator-() const {
FPS ret(this->size());
for (int i = 0; i < (int)this->size(); i++) ret[i] = -(*this)[i];
return ret;
}
void shrink() {
while (this->size() && this->back() == mint(0)) this->pop_back();
}
FPS rev() const {
FPS ret(*this);
reverse(begin(ret), end(ret));
return ret;
}
FPS dot(FPS r) const {
FPS ret(min(this->size(), r.size()));
for (int i = 0; i < (int)ret.size(); i++) ret[i] = (*this)[i] * r[i];
return ret;
}
// 前 sz 項を取ってくる。sz に足りない項は 0 埋めする
FPS pre(int sz) const {
FPS ret(begin(*this), begin(*this) + min((int)this->size(), sz));
if ((int)ret.size() < sz) ret.resize(sz);
return ret;
}
FPS operator>>(int sz) const {
if ((int)this->size() <= sz) return {};
FPS ret(*this);
ret.erase(ret.begin(), ret.begin() + sz);
return ret;
}
FPS operator<<(int sz) const {
FPS ret(*this);
ret.insert(ret.begin(), sz, mint(0));
return ret;
}
FPS diff() const {
const int n = (int)this->size();
FPS ret(max(0, n - 1));
mint one(1), coeff(1);
for (int i = 1; i < n; i++) {
ret[i - 1] = (*this)[i] * coeff;
coeff += one;
}
return ret;
}
FPS integral() const {
const int n = (int)this->size();
FPS ret(n + 1);
ret[0] = mint(0);
if (n > 0) ret[1] = mint(1);
auto mod = mint::get_mod();
for (int i = 2; i <= n; i++) ret[i] = (-ret[mod % i]) * (mod / i);
for (int i = 0; i < n; i++) ret[i + 1] *= (*this)[i];
return ret;
}
mint eval(mint x) const {
mint r = 0, w = 1;
for (auto &v : *this) r += w * v, w *= x;
return r;
}
FPS log(int deg = -1) const {
assert(!(*this).empty() && (*this)[0] == mint(1));
if (deg == -1) deg = (int)this->size();
return (this->diff() * this->inv(deg)).pre(deg - 1).integral();
}
FPS pow(int64_t k, int deg = -1) const {
const int n = (int)this->size();
if (deg == -1) deg = n;
if (k == 0) {
FPS ret(deg);
if (deg) ret[0] = 1;
return ret;
}
for (int i = 0; i < n; i++) {
if ((*this)[i] != mint(0)) {
mint rev = mint(1) / (*this)[i];
FPS ret = (((*this * rev) >> i).log(deg) * k).exp(deg);
ret *= (*this)[i].pow(k);
ret = (ret << (i * k)).pre(deg);
if ((int)ret.size() < deg) ret.resize(deg, mint(0));
return ret;
}
if (__int128_t(i + 1) * k >= deg) return FPS(deg, mint(0));
}
return FPS(deg, mint(0));
}
static void *ntt_ptr;
static void set_fft();
FPS &operator*=(const FPS &r);
void ntt();
void intt();
void ntt_doubling();
static int ntt_pr();
FPS inv(int deg = -1) const;
FPS exp(int deg = -1) const;
};
template <typename mint>
void *FormalPowerSeries<mint>::ntt_ptr = nullptr;
/**
* @brief 多項式/形式的冪級数ライブラリ
* @docs docs/fps/formal-power-series.md
*/
#line 2 "fps/polynomial-interpolation.hpp"
#line 2 "fps/multipoint-evaluation.hpp"
#line 4 "fps/multipoint-evaluation.hpp"
template <typename mint>
struct ProductTree {
using fps = FormalPowerSeries<mint>;
const vector<mint> &xs;
vector<fps> buf;
int N, xsz;
vector<int> l, r;
ProductTree(const vector<mint> &xs_) : xs(xs_), xsz(xs.size()) {
N = 1;
while (N < (int)xs.size()) N *= 2;
buf.resize(2 * N);
l.resize(2 * N, xs.size());
r.resize(2 * N, xs.size());
fps::set_fft();
if (fps::ntt_ptr == nullptr)
build();
else
build_ntt();
}
void build() {
for (int i = 0; i < xsz; i++) {
l[i + N] = i;
r[i + N] = i + 1;
buf[i + N] = {-xs[i], 1};
}
for (int i = N - 1; i > 0; i--) {
l[i] = l[(i << 1) | 0];
r[i] = r[(i << 1) | 1];
if (buf[(i << 1) | 0].empty())
continue;
else if (buf[(i << 1) | 1].empty())
buf[i] = buf[(i << 1) | 0];
else
buf[i] = buf[(i << 1) | 0] * buf[(i << 1) | 1];
}
}
void build_ntt() {
fps f;
f.reserve(N * 2);
for (int i = 0; i < xsz; i++) {
l[i + N] = i;
r[i + N] = i + 1;
buf[i + N] = {-xs[i] + 1, -xs[i] - 1};
}
for (int i = N - 1; i > 0; i--) {
l[i] = l[(i << 1) | 0];
r[i] = r[(i << 1) | 1];
if (buf[(i << 1) | 0].empty())
continue;
else if (buf[(i << 1) | 1].empty())
buf[i] = buf[(i << 1) | 0];
else if (buf[(i << 1) | 0].size() == buf[(i << 1) | 1].size()) {
buf[i] = buf[(i << 1) | 0];
f.clear();
copy(begin(buf[(i << 1) | 1]), end(buf[(i << 1) | 1]),
back_inserter(f));
buf[i].ntt_doubling();
f.ntt_doubling();
for (int j = 0; j < (int)buf[i].size(); j++) buf[i][j] *= f[j];
} else {
buf[i] = buf[(i << 1) | 0];
f.clear();
copy(begin(buf[(i << 1) | 1]), end(buf[(i << 1) | 1]),
back_inserter(f));
buf[i].ntt_doubling();
f.intt();
f.resize(buf[i].size(), mint(0));
f.ntt();
for (int j = 0; j < (int)buf[i].size(); j++) buf[i][j] *= f[j];
}
}
for (int i = 0; i < 2 * N; i++) {
buf[i].intt();
buf[i].shrink();
}
}
};
template <typename mint>
vector<mint> InnerMultipointEvaluation(const FormalPowerSeries<mint> &f,
const vector<mint> &xs,
const ProductTree<mint> &ptree) {
using fps = FormalPowerSeries<mint>;
vector<mint> ret;
ret.reserve(xs.size());
auto rec = [&](auto self, fps a, int idx) {
if (ptree.l[idx] == ptree.r[idx]) return;
a %= ptree.buf[idx];
if ((int)a.size() <= 64) {
for (int i = ptree.l[idx]; i < ptree.r[idx]; i++)
ret.push_back(a.eval(xs[i]));
return;
}
self(self, a, (idx << 1) | 0);
self(self, a, (idx << 1) | 1);
};
rec(rec, f, 1);
return ret;
}
template <typename mint>
vector<mint> MultipointEvaluation(const FormalPowerSeries<mint> &f,
const vector<mint> &xs) {
if(f.empty() || xs.empty()) return vector<mint>(xs.size(), mint(0));
return InnerMultipointEvaluation(f, xs, ProductTree<mint>(xs));
}
/**
* @brief Multipoint Evaluation
*/
#line 5 "fps/polynomial-interpolation.hpp"
template <class mint>
FormalPowerSeries<mint> PolynomialInterpolation(const vector<mint> &xs,
const vector<mint> &ys) {
using fps = FormalPowerSeries<mint>;
assert(xs.size() == ys.size());
ProductTree<mint> ptree(xs);
fps w = ptree.buf[1].diff();
vector<mint> vs = InnerMultipointEvaluation<mint>(w, xs, ptree);
auto rec = [&](auto self, int idx) -> fps {
if (idx >= ptree.N) {
if (idx - ptree.N < (int)xs.size())
return {ys[idx - ptree.N] / vs[idx - ptree.N]};
else
return {mint(1)};
}
if (ptree.buf[idx << 1 | 0].empty())
return {};
else if (ptree.buf[idx << 1 | 1].empty())
return self(self, idx << 1 | 0);
return self(self, idx << 1 | 0) * ptree.buf[idx << 1 | 1] +
self(self, idx << 1 | 1) * ptree.buf[idx << 1 | 0];
};
return rec(rec, 1);
}
#line 2 "matrix/matrix.hpp"
#line 2 "matrix/inverse-matrix.hpp"
#line 2 "matrix/gauss-elimination.hpp"
#include <utility>
#include <vector>
using namespace std;
// {rank, det(非正方行列の場合は未定義)} を返す
// 型が double や Rational でも動くはず?(未検証)
//
// pivot 候補 : [0, pivot_end)
template <typename T>
std::pair<int, T> GaussElimination(vector<vector<T>> &a, int pivot_end = -1,
bool diagonalize = false) {
if (a.empty()) return {0, 1};
int H = a.size(), W = a[0].size(), rank = 0;
if (pivot_end == -1) pivot_end = W;
T det = 1;
for (int j = 0; j < pivot_end; j++) {
int idx = -1;
for (int i = rank; i < H; i++) {
if (a[i][j] != T(0)) {
idx = i;
break;
}
}
if (idx == -1) {
det = 0;
continue;
}
if (rank != idx) det = -det, swap(a[rank], a[idx]);
det *= a[rank][j];
if (diagonalize && a[rank][j] != T(1)) {
T coeff = T(1) / a[rank][j];
for (int k = j; k < W; k++) a[rank][k] *= coeff;
}
int is = diagonalize ? 0 : rank + 1;
for (int i = is; i < H; i++) {
if (i == rank) continue;
if (a[i][j] != T(0)) {
T coeff = a[i][j] / a[rank][j];
for (int k = j; k < W; k++) a[i][k] -= a[rank][k] * coeff;
}
}
rank++;
}
return make_pair(rank, det);
}
#line 4 "matrix/inverse-matrix.hpp"
template <typename mint>
vector<vector<mint>> inverse_matrix(const vector<vector<mint>>& a) {
int N = a.size();
assert(N > 0);
assert(N == (int)a[0].size());
vector<vector<mint>> m(N, vector<mint>(2 * N));
for (int i = 0; i < N; i++) {
copy(begin(a[i]), end(a[i]), begin(m[i]));
m[i][N + i] = 1;
}
auto [rank, det] = GaussElimination(m, N, true);
if (rank != N) return {};
vector<vector<mint>> b(N);
for (int i = 0; i < N; i++) {
copy(begin(m[i]) + N, end(m[i]), back_inserter(b[i]));
}
return b;
}
#line 4 "matrix/matrix.hpp"
template <class T>
struct Matrix {
vector<vector<T> > A;
Matrix() = default;
Matrix(int n, int m) : A(n, vector<T>(m, T())) {}
Matrix(int n) : A(n, vector<T>(n, T())){};
int H() const { return A.size(); }
int W() const { return A[0].size(); }
int size() const { return A.size(); }
inline const vector<T> &operator[](int k) const { return A[k]; }
inline vector<T> &operator[](int k) { return A[k]; }
static Matrix I(int n) {
Matrix mat(n);
for (int i = 0; i < n; i++) mat[i][i] = 1;
return (mat);
}
Matrix &operator+=(const Matrix &B) {
int n = H(), m = W();
assert(n == B.H() && m == B.W());
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++) (*this)[i][j] += B[i][j];
return (*this);
}
Matrix &operator-=(const Matrix &B) {
int n = H(), m = W();
assert(n == B.H() && m == B.W());
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++) (*this)[i][j] -= B[i][j];
return (*this);
}
Matrix &operator*=(const Matrix &B) {
int n = H(), m = B.W(), p = W();
assert(p == B.H());
vector<vector<T> > C(n, vector<T>(m, T{}));
for (int i = 0; i < n; i++)
for (int k = 0; k < p; k++)
for (int j = 0; j < m; j++) C[i][j] += (*this)[i][k] * B[k][j];
A.swap(C);
return (*this);
}
Matrix &operator^=(long long k) {
Matrix B = Matrix::I(H());
while (k > 0) {
if (k & 1) B *= *this;
*this *= *this;
k >>= 1LL;
}
A.swap(B.A);
return (*this);
}
Matrix operator+(const Matrix &B) const { return (Matrix(*this) += B); }
Matrix operator-(const Matrix &B) const { return (Matrix(*this) -= B); }
Matrix operator*(const Matrix &B) const { return (Matrix(*this) *= B); }
Matrix operator^(const long long k) const { return (Matrix(*this) ^= k); }
bool operator==(const Matrix &B) const {
assert(H() == B.H() && W() == B.W());
for (int i = 0; i < H(); i++)
for (int j = 0; j < W(); j++)
if (A[i][j] != B[i][j]) return false;
return true;
}
bool operator!=(const Matrix &B) const {
assert(H() == B.H() && W() == B.W());
for (int i = 0; i < H(); i++)
for (int j = 0; j < W(); j++)
if (A[i][j] != B[i][j]) return true;
return false;
}
Matrix inverse() const {
assert(H() == W());
Matrix B(H());
B.A = inverse_matrix(A);
return B;
}
friend ostream &operator<<(ostream &os, const Matrix &p) {
int n = p.H(), m = p.W();
for (int i = 0; i < n; i++) {
os << (i ? " " : "") << "[";
for (int j = 0; j < m; j++) {
os << p[i][j] << (j + 1 == m ? "]\n" : ",");
}
}
return (os);
}
T determinant() const {
Matrix B(*this);
assert(H() == W());
T ret = 1;
for (int i = 0; i < H(); i++) {
int idx = -1;
for (int j = i; j < W(); j++) {
if (B[j][i] != 0) {
idx = j;
break;
}
}
if (idx == -1) return 0;
if (i != idx) {
ret *= T(-1);
swap(B[i], B[idx]);
}
ret *= B[i][i];
T inv = T(1) / B[i][i];
for (int j = 0; j < W(); j++) {
B[i][j] *= inv;
}
for (int j = i + 1; j < H(); j++) {
T a = B[j][i];
if (a == 0) continue;
for (int k = i; k < W(); k++) {
B[j][k] -= B[i][k] * a;
}
}
}
return ret;
}
};
/**
* @brief 行列ライブラリ
*/
#line 8 "matrix/polynomial-matrix-determinant.hpp"
template <typename mint>
FormalPowerSeries<mint> PolynomialMatrixDeterminant(
const Matrix<FormalPowerSeries<mint>> &m) {
int N = m.size();
int deg = 0;
for (int i = 0; i < N; ++i) deg += max<int>(1, m[i][i].size()) - 1;
vector<mint> xs(deg + 1);
vector<mint> ys(deg + 1);
Matrix<mint> M(N);
for (int x = 0; x <= deg; x++) {
xs[x] = x;
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j) M[i][j] = m[i][j].eval(x);
ys[x] = M.determinant();
}
return PolynomialInterpolation<mint>(xs, ys);
}
/**
* @brief 多項式行列の行列式
* @docs docs/matrix/polynomial-matrix-determinant.md
*/