Nyaan's Library

This documentation is automatically generated by online-judge-tools/verification-helper

View on GitHub

:heavy_check_mark: 行列木定理(ラプラシアン行列)
(matrix/matrix-tree.hpp)

Depends on

Verified with

Code

#pragma once



#include "matrix.hpp"
#include "polynomial-matrix-determinant.hpp"

template <typename T>
struct MatrixTree {
  int n;
  Matrix<T> m;
  MatrixTree(int _n) : n(_n), m(_n) { assert(n > 0); }

  void add(int i, int j, const T& x) {
    if (i < n) m[i][i] += x;
    if (j < n) m[j][j] += x;
    if (i < n and j < n) {
      m[i][j] -= x;
      m[j][i] -= x;
    }
  }

  Matrix<T> get() const { return m; }

  template <typename U, typename = void>
  struct has_value_type : false_type {};
  template <typename U>
  struct has_value_type<
      U, typename conditional<false, typename U::value_type, void>::type>
      : true_type {};

  template <typename U = T,
            enable_if_t<has_value_type<U>::value, nullptr_t> = nullptr>
  T calc() {
    return PolynomialMatrixDeterminant(m);
  }
  template <typename U = T,
            enable_if_t<!has_value_type<U>::value, nullptr_t> = nullptr>
  T calc() {
    return m.determinant();
  }
};

/**
 * @brief 行列木定理(ラプラシアン行列)
 */
#line 2 "matrix/matrix-tree.hpp"



#line 2 "matrix/matrix.hpp"

#line 2 "matrix/inverse-matrix.hpp"

#line 2 "matrix/gauss-elimination.hpp"

#include <utility>
#include <vector>
using namespace std;

// {rank, det(非正方行列の場合は未定義)} を返す
// 型が double や Rational でも動くはず?(未検証)
//
// pivot 候補 : [0, pivot_end)
template <typename T>
std::pair<int, T> GaussElimination(vector<vector<T>> &a, int pivot_end = -1,
                                   bool diagonalize = false) {
  int H = a.size(), W = a[0].size(), rank = 0;
  if (pivot_end == -1) pivot_end = W;
  T det = 1;
  for (int j = 0; j < pivot_end; j++) {
    int idx = -1;
    for (int i = rank; i < H; i++) {
      if (a[i][j] != T(0)) {
        idx = i;
        break;
      }
    }
    if (idx == -1) {
      det = 0;
      continue;
    }
    if (rank != idx) det = -det, swap(a[rank], a[idx]);
    det *= a[rank][j];
    if (diagonalize && a[rank][j] != T(1)) {
      T coeff = T(1) / a[rank][j];
      for (int k = j; k < W; k++) a[rank][k] *= coeff;
    }
    int is = diagonalize ? 0 : rank + 1;
    for (int i = is; i < H; i++) {
      if (i == rank) continue;
      if (a[i][j] != T(0)) {
        T coeff = a[i][j] / a[rank][j];
        for (int k = j; k < W; k++) a[i][k] -= a[rank][k] * coeff;
      }
    }
    rank++;
  }
  return make_pair(rank, det);
}
#line 4 "matrix/inverse-matrix.hpp"

template <typename mint>
vector<vector<mint>> inverse_matrix(const vector<vector<mint>>& a) {
  int N = a.size();
  assert(N > 0);
  assert(N == (int)a[0].size());

  vector<vector<mint>> m(N, vector<mint>(2 * N));
  for (int i = 0; i < N; i++) {
    copy(begin(a[i]), end(a[i]), begin(m[i]));
    m[i][N + i] = 1;
  }

  auto [rank, det] = GaussElimination(m, N, true);
  if (rank != N) return {};

  vector<vector<mint>> b(N);
  for (int i = 0; i < N; i++) {
    copy(begin(m[i]) + N, end(m[i]), back_inserter(b[i]));
  }
  return b;
}
#line 4 "matrix/matrix.hpp"

template <class T>
struct Matrix {
  vector<vector<T> > A;

  Matrix() = default;
  Matrix(int n, int m) : A(n, vector<T>(m, T())) {}
  Matrix(int n) : A(n, vector<T>(n, T())){};

  int H() const { return A.size(); }

  int W() const { return A[0].size(); }

  int size() const { return A.size(); }

  inline const vector<T> &operator[](int k) const { return A[k]; }

  inline vector<T> &operator[](int k) { return A[k]; }

  static Matrix I(int n) {
    Matrix mat(n);
    for (int i = 0; i < n; i++) mat[i][i] = 1;
    return (mat);
  }

  Matrix &operator+=(const Matrix &B) {
    int n = H(), m = W();
    assert(n == B.H() && m == B.W());
    for (int i = 0; i < n; i++)
      for (int j = 0; j < m; j++) (*this)[i][j] += B[i][j];
    return (*this);
  }

  Matrix &operator-=(const Matrix &B) {
    int n = H(), m = W();
    assert(n == B.H() && m == B.W());
    for (int i = 0; i < n; i++)
      for (int j = 0; j < m; j++) (*this)[i][j] -= B[i][j];
    return (*this);
  }

  Matrix &operator*=(const Matrix &B) {
    int n = H(), m = B.W(), p = W();
    assert(p == B.H());
    vector<vector<T> > C(n, vector<T>(m, T{}));
    for (int i = 0; i < n; i++)
      for (int k = 0; k < p; k++)
        for (int j = 0; j < m; j++) C[i][j] += (*this)[i][k] * B[k][j];
    A.swap(C);
    return (*this);
  }

  Matrix &operator^=(long long k) {
    Matrix B = Matrix::I(H());
    while (k > 0) {
      if (k & 1) B *= *this;
      *this *= *this;
      k >>= 1LL;
    }
    A.swap(B.A);
    return (*this);
  }

  Matrix operator+(const Matrix &B) const { return (Matrix(*this) += B); }

  Matrix operator-(const Matrix &B) const { return (Matrix(*this) -= B); }

  Matrix operator*(const Matrix &B) const { return (Matrix(*this) *= B); }

  Matrix operator^(const long long k) const { return (Matrix(*this) ^= k); }

  bool operator==(const Matrix &B) const {
    assert(H() == B.H() && W() == B.W());
    for (int i = 0; i < H(); i++)
      for (int j = 0; j < W(); j++)
        if (A[i][j] != B[i][j]) return false;
    return true;
  }

  bool operator!=(const Matrix &B) const {
    assert(H() == B.H() && W() == B.W());
    for (int i = 0; i < H(); i++)
      for (int j = 0; j < W(); j++)
        if (A[i][j] != B[i][j]) return true;
    return false;
  }

  Matrix inverse() const {
    assert(H() == W());
    Matrix B(H());
    B.A = inverse_matrix(A);
    return B;
  }

  friend ostream &operator<<(ostream &os, const Matrix &p) {
    int n = p.H(), m = p.W();
    for (int i = 0; i < n; i++) {
      os << (i ? "   " : "") << "[";
      for (int j = 0; j < m; j++) {
        os << p[i][j] << (j + 1 == m ? "]\n" : ",");
      }
    }
    return (os);
  }

  T determinant() const {
    Matrix B(*this);
    assert(H() == W());
    T ret = 1;
    for (int i = 0; i < H(); i++) {
      int idx = -1;
      for (int j = i; j < W(); j++) {
        if (B[j][i] != 0) {
          idx = j;
          break;
        }
      }
      if (idx == -1) return 0;
      if (i != idx) {
        ret *= T(-1);
        swap(B[i], B[idx]);
      }
      ret *= B[i][i];
      T inv = T(1) / B[i][i];
      for (int j = 0; j < W(); j++) {
        B[i][j] *= inv;
      }
      for (int j = i + 1; j < H(); j++) {
        T a = B[j][i];
        if (a == 0) continue;
        for (int k = i; k < W(); k++) {
          B[j][k] -= B[i][k] * a;
        }
      }
    }
    return ret;
  }
};

/**
 * @brief 行列ライブラリ
 */
#line 2 "matrix/polynomial-matrix-determinant.hpp"



#line 2 "fps/formal-power-series.hpp"

template <typename mint>
struct FormalPowerSeries : vector<mint> {
  using vector<mint>::vector;
  using FPS = FormalPowerSeries;

  FPS &operator+=(const FPS &r) {
    if (r.size() > this->size()) this->resize(r.size());
    for (int i = 0; i < (int)r.size(); i++) (*this)[i] += r[i];
    return *this;
  }

  FPS &operator+=(const mint &r) {
    if (this->empty()) this->resize(1);
    (*this)[0] += r;
    return *this;
  }

  FPS &operator-=(const FPS &r) {
    if (r.size() > this->size()) this->resize(r.size());
    for (int i = 0; i < (int)r.size(); i++) (*this)[i] -= r[i];
    return *this;
  }

  FPS &operator-=(const mint &r) {
    if (this->empty()) this->resize(1);
    (*this)[0] -= r;
    return *this;
  }

  FPS &operator*=(const mint &v) {
    for (int k = 0; k < (int)this->size(); k++) (*this)[k] *= v;
    return *this;
  }

  FPS &operator/=(const FPS &r) {
    if (this->size() < r.size()) {
      this->clear();
      return *this;
    }
    int n = this->size() - r.size() + 1;
    if ((int)r.size() <= 64) {
      FPS f(*this), g(r);
      g.shrink();
      mint coeff = g.back().inverse();
      for (auto &x : g) x *= coeff;
      int deg = (int)f.size() - (int)g.size() + 1;
      int gs = g.size();
      FPS quo(deg);
      for (int i = deg - 1; i >= 0; i--) {
        quo[i] = f[i + gs - 1];
        for (int j = 0; j < gs; j++) f[i + j] -= quo[i] * g[j];
      }
      *this = quo * coeff;
      this->resize(n, mint(0));
      return *this;
    }
    return *this = ((*this).rev().pre(n) * r.rev().inv(n)).pre(n).rev();
  }

  FPS &operator%=(const FPS &r) {
    *this -= *this / r * r;
    shrink();
    return *this;
  }

  FPS operator+(const FPS &r) const { return FPS(*this) += r; }
  FPS operator+(const mint &v) const { return FPS(*this) += v; }
  FPS operator-(const FPS &r) const { return FPS(*this) -= r; }
  FPS operator-(const mint &v) const { return FPS(*this) -= v; }
  FPS operator*(const FPS &r) const { return FPS(*this) *= r; }
  FPS operator*(const mint &v) const { return FPS(*this) *= v; }
  FPS operator/(const FPS &r) const { return FPS(*this) /= r; }
  FPS operator%(const FPS &r) const { return FPS(*this) %= r; }
  FPS operator-() const {
    FPS ret(this->size());
    for (int i = 0; i < (int)this->size(); i++) ret[i] = -(*this)[i];
    return ret;
  }

  void shrink() {
    while (this->size() && this->back() == mint(0)) this->pop_back();
  }

  FPS rev() const {
    FPS ret(*this);
    reverse(begin(ret), end(ret));
    return ret;
  }

  FPS dot(FPS r) const {
    FPS ret(min(this->size(), r.size()));
    for (int i = 0; i < (int)ret.size(); i++) ret[i] = (*this)[i] * r[i];
    return ret;
  }

  // 前 sz 項を取ってくる。sz に足りない項は 0 埋めする
  FPS pre(int sz) const {
    FPS ret(begin(*this), begin(*this) + min((int)this->size(), sz));
    if ((int)ret.size() < sz) ret.resize(sz);
    return ret;
  }

  FPS operator>>(int sz) const {
    if ((int)this->size() <= sz) return {};
    FPS ret(*this);
    ret.erase(ret.begin(), ret.begin() + sz);
    return ret;
  }

  FPS operator<<(int sz) const {
    FPS ret(*this);
    ret.insert(ret.begin(), sz, mint(0));
    return ret;
  }

  FPS diff() const {
    const int n = (int)this->size();
    FPS ret(max(0, n - 1));
    mint one(1), coeff(1);
    for (int i = 1; i < n; i++) {
      ret[i - 1] = (*this)[i] * coeff;
      coeff += one;
    }
    return ret;
  }

  FPS integral() const {
    const int n = (int)this->size();
    FPS ret(n + 1);
    ret[0] = mint(0);
    if (n > 0) ret[1] = mint(1);
    auto mod = mint::get_mod();
    for (int i = 2; i <= n; i++) ret[i] = (-ret[mod % i]) * (mod / i);
    for (int i = 0; i < n; i++) ret[i + 1] *= (*this)[i];
    return ret;
  }

  mint eval(mint x) const {
    mint r = 0, w = 1;
    for (auto &v : *this) r += w * v, w *= x;
    return r;
  }

  FPS log(int deg = -1) const {
    assert(!(*this).empty() && (*this)[0] == mint(1));
    if (deg == -1) deg = (int)this->size();
    return (this->diff() * this->inv(deg)).pre(deg - 1).integral();
  }

  FPS pow(int64_t k, int deg = -1) const {
    const int n = (int)this->size();
    if (deg == -1) deg = n;
    if (k == 0) {
      FPS ret(deg);
      if (deg) ret[0] = 1;
      return ret;
    }
    for (int i = 0; i < n; i++) {
      if ((*this)[i] != mint(0)) {
        mint rev = mint(1) / (*this)[i];
        FPS ret = (((*this * rev) >> i).log(deg) * k).exp(deg);
        ret *= (*this)[i].pow(k);
        ret = (ret << (i * k)).pre(deg);
        if ((int)ret.size() < deg) ret.resize(deg, mint(0));
        return ret;
      }
      if (__int128_t(i + 1) * k >= deg) return FPS(deg, mint(0));
    }
    return FPS(deg, mint(0));
  }

  static void *ntt_ptr;
  static void set_fft();
  FPS &operator*=(const FPS &r);
  void ntt();
  void intt();
  void ntt_doubling();
  static int ntt_pr();
  FPS inv(int deg = -1) const;
  FPS exp(int deg = -1) const;
};
template <typename mint>
void *FormalPowerSeries<mint>::ntt_ptr = nullptr;

/**
 * @brief 多項式/形式的冪級数ライブラリ
 * @docs docs/fps/formal-power-series.md
 */
#line 2 "fps/polynomial-interpolation.hpp"

#line 2 "fps/multipoint-evaluation.hpp"

#line 4 "fps/multipoint-evaluation.hpp"

template <typename mint>
struct ProductTree {
  using fps = FormalPowerSeries<mint>;
  const vector<mint> &xs;
  vector<fps> buf;
  int N, xsz;
  vector<int> l, r;
  ProductTree(const vector<mint> &xs_) : xs(xs_), xsz(xs.size()) {
    N = 1;
    while (N < (int)xs.size()) N *= 2;
    buf.resize(2 * N);
    l.resize(2 * N, xs.size());
    r.resize(2 * N, xs.size());
    fps::set_fft();
    if (fps::ntt_ptr == nullptr)
      build();
    else
      build_ntt();
  }

  void build() {
    for (int i = 0; i < xsz; i++) {
      l[i + N] = i;
      r[i + N] = i + 1;
      buf[i + N] = {-xs[i], 1};
    }
    for (int i = N - 1; i > 0; i--) {
      l[i] = l[(i << 1) | 0];
      r[i] = r[(i << 1) | 1];
      if (buf[(i << 1) | 0].empty())
        continue;
      else if (buf[(i << 1) | 1].empty())
        buf[i] = buf[(i << 1) | 0];
      else
        buf[i] = buf[(i << 1) | 0] * buf[(i << 1) | 1];
    }
  }

  void build_ntt() {
    fps f;
    f.reserve(N * 2);
    for (int i = 0; i < xsz; i++) {
      l[i + N] = i;
      r[i + N] = i + 1;
      buf[i + N] = {-xs[i] + 1, -xs[i] - 1};
    }
    for (int i = N - 1; i > 0; i--) {
      l[i] = l[(i << 1) | 0];
      r[i] = r[(i << 1) | 1];
      if (buf[(i << 1) | 0].empty())
        continue;
      else if (buf[(i << 1) | 1].empty())
        buf[i] = buf[(i << 1) | 0];
      else if (buf[(i << 1) | 0].size() == buf[(i << 1) | 1].size()) {
        buf[i] = buf[(i << 1) | 0];
        f.clear();
        copy(begin(buf[(i << 1) | 1]), end(buf[(i << 1) | 1]),
             back_inserter(f));
        buf[i].ntt_doubling();
        f.ntt_doubling();
        for (int j = 0; j < (int)buf[i].size(); j++) buf[i][j] *= f[j];
      } else {
        buf[i] = buf[(i << 1) | 0];
        f.clear();
        copy(begin(buf[(i << 1) | 1]), end(buf[(i << 1) | 1]),
             back_inserter(f));
        buf[i].ntt_doubling();
        f.intt();
        f.resize(buf[i].size(), mint(0));
        f.ntt();
        for (int j = 0; j < (int)buf[i].size(); j++) buf[i][j] *= f[j];
      }
    }
    for (int i = 0; i < 2 * N; i++) {
      buf[i].intt();
      buf[i].shrink();
    }
  }
};

template <typename mint>
vector<mint> InnerMultipointEvaluation(const FormalPowerSeries<mint> &f,
                                       const vector<mint> &xs,
                                       const ProductTree<mint> &ptree) {
  using fps = FormalPowerSeries<mint>;
  vector<mint> ret;
  ret.reserve(xs.size());
  auto rec = [&](auto self, fps a, int idx) {
    if (ptree.l[idx] == ptree.r[idx]) return;
    a %= ptree.buf[idx];
    if ((int)a.size() <= 64) {
      for (int i = ptree.l[idx]; i < ptree.r[idx]; i++)
        ret.push_back(a.eval(xs[i]));
      return;
    }
    self(self, a, (idx << 1) | 0);
    self(self, a, (idx << 1) | 1);
  };
  rec(rec, f, 1);
  return ret;
}

template <typename mint>
vector<mint> MultipointEvaluation(const FormalPowerSeries<mint> &f,
                                  const vector<mint> &xs) {
  if(f.empty() || xs.empty()) return vector<mint>(xs.size(), mint(0));
  return InnerMultipointEvaluation(f, xs, ProductTree<mint>(xs));
}

/**
 * @brief Multipoint Evaluation
 */
#line 5 "fps/polynomial-interpolation.hpp"

template <class mint>
FormalPowerSeries<mint> PolynomialInterpolation(const vector<mint> &xs,
                                                const vector<mint> &ys) {
  using fps = FormalPowerSeries<mint>;
  assert(xs.size() == ys.size());
  ProductTree<mint> ptree(xs);
  fps w = ptree.buf[1].diff();
  vector<mint> vs = InnerMultipointEvaluation<mint>(w, xs, ptree);
  auto rec = [&](auto self, int idx) -> fps {
    if (idx >= ptree.N) {
      if (idx - ptree.N < (int)xs.size())
        return {ys[idx - ptree.N] / vs[idx - ptree.N]};
      else
        return {mint(1)};
    }
    if (ptree.buf[idx << 1 | 0].empty())
      return {};
    else if (ptree.buf[idx << 1 | 1].empty())
      return self(self, idx << 1 | 0);
    return self(self, idx << 1 | 0) * ptree.buf[idx << 1 | 1] +
           self(self, idx << 1 | 1) * ptree.buf[idx << 1 | 0];
  };
  return rec(rec, 1);
}
#line 8 "matrix/polynomial-matrix-determinant.hpp"

template <typename mint>
FormalPowerSeries<mint> PolynomialMatrixDeterminant(
    const Matrix<FormalPowerSeries<mint>> &m) {
  int N = m.size();
  int deg = 0;
  for (int i = 0; i < N; ++i) deg += max<int>(1, m[i][i].size()) - 1;
  vector<mint> xs(deg + 1);
  vector<mint> ys(deg + 1);
  Matrix<mint> M(N);
  for (int x = 0; x <= deg; x++) {
    xs[x] = x;
    for (int i = 0; i < N; ++i)
      for (int j = 0; j < N; ++j) M[i][j] = m[i][j].eval(x);
    ys[x] = M.determinant();
  }
  return PolynomialInterpolation<mint>(xs, ys);
}

/**
 * @brief 多項式行列の行列式
 * @docs docs/matrix/polynomial-matrix-determinant.md
 */
#line 7 "matrix/matrix-tree.hpp"

template <typename T>
struct MatrixTree {
  int n;
  Matrix<T> m;
  MatrixTree(int _n) : n(_n), m(_n) { assert(n > 0); }

  void add(int i, int j, const T& x) {
    if (i < n) m[i][i] += x;
    if (j < n) m[j][j] += x;
    if (i < n and j < n) {
      m[i][j] -= x;
      m[j][i] -= x;
    }
  }

  Matrix<T> get() const { return m; }

  template <typename U, typename = void>
  struct has_value_type : false_type {};
  template <typename U>
  struct has_value_type<
      U, typename conditional<false, typename U::value_type, void>::type>
      : true_type {};

  template <typename U = T,
            enable_if_t<has_value_type<U>::value, nullptr_t> = nullptr>
  T calc() {
    return PolynomialMatrixDeterminant(m);
  }
  template <typename U = T,
            enable_if_t<!has_value_type<U>::value, nullptr_t> = nullptr>
  T calc() {
    return m.determinant();
  }
};

/**
 * @brief 行列木定理(ラプラシアン行列)
 */
Back to top page