Nyaan's Library

This documentation is automatically generated by online-judge-tools/verification-helper

View on GitHub

:heavy_check_mark: verify/verify-unit-test/enumerate-convex.test.cpp

Depends on

Code

#define PROBLEM "https://judge.yosupo.jp/problem/aplusb"
//
#include "../../template/template.hpp"
//
#include "../../math/enumerate-convex.hpp"
#include "../../math/isqrt.hpp"
#include "../../math/two-square.hpp"
#include "../../misc/rng.hpp"
//
using namespace Nyaan;

vector<pair<long long, long long>> calc(ll N) {
  ll m = isqrt(N);
  // (0, m) を中心とする半径 sqrt(N) の円
  auto inside = [&](ll x, ll y) {
    return y >= m or x * x + (y - m) * (y - m) <= N;
  };
  auto candicate = [&](ll x, ll y, ll c, ll d) {
    // (x + sc)^2 + (y - m + sd)^2 <= N
    ll A = c * c + d * d;
    ll B = 2 * c * x + 2 * d * (y - m);
    // A s^2 + B s + const <= 0
    ll num = -B, den = 2 * A;
    ll quo = num / den, rem = num % den;
    if (rem < 0) quo--, rem += den;
    if (2 * rem > den) quo++, rem -= den;
    return quo;
  };

  auto ans = enumerate_convex<ll>(0, 0, m, inside, candicate);
  vector<pair<long long, long long>> res;
  each2(x, y, ans) if (x * x + (y - m) * (y - m) == N) {
    res.emplace_back(x, m - y);
  }
  sort(begin(res), end(res));
  return res;
}

void check(long long N) {
  auto ac = two_square(N);
  auto ad = calc(N);
  assert(ac == ad);
}

void q() {
  rep1(N, 1000) check(N);
  rep(t, 100) check(rng(1001, TEN(9)));
  check(TEN(18));

  trc2("OK");
  inl(a, b);
  out(a + b);
}

void Nyaan::solve() {
  int t = 1;
  // in(t);
  while (t--) q();
}
#line 1 "verify/verify-unit-test/enumerate-convex.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/aplusb"
//
#line 2 "template/template.hpp"
using namespace std;

// intrinstic
#include <immintrin.h>

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

// utility
#line 1 "template/util.hpp"
namespace Nyaan {
using ll = long long;
using i64 = long long;
using u64 = unsigned long long;
using i128 = __int128_t;
using u128 = __uint128_t;

template <typename T>
using V = vector<T>;
template <typename T>
using VV = vector<vector<T>>;
using vi = vector<int>;
using vl = vector<long long>;
using vd = V<double>;
using vs = V<string>;
using vvi = vector<vector<int>>;
using vvl = vector<vector<long long>>;
template <typename T>
using minpq = priority_queue<T, vector<T>, greater<T>>;

template <typename T, typename U>
struct P : pair<T, U> {
  template <typename... Args>
  P(Args... args) : pair<T, U>(args...) {}

  using pair<T, U>::first;
  using pair<T, U>::second;

  P &operator+=(const P &r) {
    first += r.first;
    second += r.second;
    return *this;
  }
  P &operator-=(const P &r) {
    first -= r.first;
    second -= r.second;
    return *this;
  }
  P &operator*=(const P &r) {
    first *= r.first;
    second *= r.second;
    return *this;
  }
  template <typename S>
  P &operator*=(const S &r) {
    first *= r, second *= r;
    return *this;
  }
  P operator+(const P &r) const { return P(*this) += r; }
  P operator-(const P &r) const { return P(*this) -= r; }
  P operator*(const P &r) const { return P(*this) *= r; }
  template <typename S>
  P operator*(const S &r) const {
    return P(*this) *= r;
  }
  P operator-() const { return P{-first, -second}; }
};

using pl = P<ll, ll>;
using pi = P<int, int>;
using vp = V<pl>;

constexpr int inf = 1001001001;
constexpr long long infLL = 4004004004004004004LL;

template <typename T>
int sz(const T &t) {
  return t.size();
}

template <typename T, typename U>
inline bool amin(T &x, U y) {
  return (y < x) ? (x = y, true) : false;
}
template <typename T, typename U>
inline bool amax(T &x, U y) {
  return (x < y) ? (x = y, true) : false;
}

template <typename T>
inline T Max(const vector<T> &v) {
  return *max_element(begin(v), end(v));
}
template <typename T>
inline T Min(const vector<T> &v) {
  return *min_element(begin(v), end(v));
}
template <typename T>
inline long long Sum(const vector<T> &v) {
  return accumulate(begin(v), end(v), 0LL);
}

template <typename T>
int lb(const vector<T> &v, const T &a) {
  return lower_bound(begin(v), end(v), a) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, const T &a) {
  return upper_bound(begin(v), end(v), a) - begin(v);
}

constexpr long long TEN(int n) {
  long long ret = 1, x = 10;
  for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1);
  return ret;
}

template <typename T, typename U>
pair<T, U> mkp(const T &t, const U &u) {
  return make_pair(t, u);
}

template <typename T>
vector<T> mkrui(const vector<T> &v, bool rev = false) {
  vector<T> ret(v.size() + 1);
  if (rev) {
    for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1];
  } else {
    for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];
  }
  return ret;
};

template <typename T>
vector<T> mkuni(const vector<T> &v) {
  vector<T> ret(v);
  sort(ret.begin(), ret.end());
  ret.erase(unique(ret.begin(), ret.end()), ret.end());
  return ret;
}

template <typename F>
vector<int> mkord(int N, F f) {
  vector<int> ord(N);
  iota(begin(ord), end(ord), 0);
  sort(begin(ord), end(ord), f);
  return ord;
}

template <typename T>
vector<int> mkinv(vector<T> &v) {
  int max_val = *max_element(begin(v), end(v));
  vector<int> inv(max_val + 1, -1);
  for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i;
  return inv;
}

vector<int> mkiota(int n) {
  vector<int> ret(n);
  iota(begin(ret), end(ret), 0);
  return ret;
}

template <typename T>
T mkrev(const T &v) {
  T w{v};
  reverse(begin(w), end(w));
  return w;
}

template <typename T>
bool nxp(T &v) {
  return next_permutation(begin(v), end(v));
}

// 返り値の型は入力の T に依存
// i 要素目 : [0, a[i])
template <typename T>
vector<vector<T>> product(const vector<T> &a) {
  vector<vector<T>> ret;
  vector<T> v;
  auto dfs = [&](auto rc, int i) -> void {
    if (i == (int)a.size()) {
      ret.push_back(v);
      return;
    }
    for (int j = 0; j < a[i]; j++) v.push_back(j), rc(rc, i + 1), v.pop_back();
  };
  dfs(dfs, 0);
  return ret;
}

// F : function(void(T&)), mod を取る操作
// T : 整数型のときはオーバーフローに注意する
template <typename T>
T Power(T a, long long n, const T &I, const function<void(T &)> &f) {
  T res = I;
  for (; n; f(a = a * a), n >>= 1) {
    if (n & 1) f(res = res * a);
  }
  return res;
}
// T : 整数型のときはオーバーフローに注意する
template <typename T>
T Power(T a, long long n, const T &I = T{1}) {
  return Power(a, n, I, function<void(T &)>{[](T &) -> void {}});
}

template <typename T>
T Rev(const T &v) {
  T res = v;
  reverse(begin(res), end(res));
  return res;
}

template <typename T>
vector<T> Transpose(const vector<T> &v) {
  using U = typename T::value_type;
  if(v.empty()) return {};
  int H = v.size(), W = v[0].size();
  vector res(W, T(H, U{}));
  for (int i = 0; i < H; i++) {
    for (int j = 0; j < W; j++) {
      res[j][i] = v[i][j];
    }
  }
  return res;
}

template <typename T>
vector<T> Rotate(const vector<T> &v, int clockwise = true) {
  using U = typename T::value_type;
  int H = v.size(), W = v[0].size();
  vector res(W, T(H, U{}));
  for (int i = 0; i < H; i++) {
    for (int j = 0; j < W; j++) {
      if (clockwise) {
        res[W - 1 - j][i] = v[i][j];
      } else {
        res[j][H - 1 - i] = v[i][j];
      }
    }
  }
  return res;
}

}  // namespace Nyaan
#line 58 "template/template.hpp"

// bit operation
#line 1 "template/bitop.hpp"
namespace Nyaan {
__attribute__((target("popcnt"))) inline int popcnt(const u64 &a) {
  return __builtin_popcountll(a);
}
inline int lsb(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int ctz(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int msb(const u64 &a) { return a ? 63 - __builtin_clzll(a) : -1; }
template <typename T>
inline int gbit(const T &a, int i) {
  return (a >> i) & 1;
}
template <typename T>
inline void sbit(T &a, int i, bool b) {
  if (gbit(a, i) != b) a ^= T(1) << i;
}
constexpr long long PW(int n) { return 1LL << n; }
constexpr long long MSK(int n) { return (1LL << n) - 1; }
}  // namespace Nyaan
#line 61 "template/template.hpp"

// inout
#line 1 "template/inout.hpp"
namespace Nyaan {

template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
  os << p.first << " " << p.second;
  return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
  is >> p.first >> p.second;
  return is;
}

template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
  int s = (int)v.size();
  for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
  return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
  for (auto &x : v) is >> x;
  return is;
}

istream &operator>>(istream &is, __int128_t &x) {
  string S;
  is >> S;
  x = 0;
  int flag = 0;
  for (auto &c : S) {
    if (c == '-') {
      flag = true;
      continue;
    }
    x *= 10;
    x += c - '0';
  }
  if (flag) x = -x;
  return is;
}

istream &operator>>(istream &is, __uint128_t &x) {
  string S;
  is >> S;
  x = 0;
  for (auto &c : S) {
    x *= 10;
    x += c - '0';
  }
  return is;
}

ostream &operator<<(ostream &os, __int128_t x) {
  if (x == 0) return os << 0;
  if (x < 0) os << '-', x = -x;
  string S;
  while (x) S.push_back('0' + x % 10), x /= 10;
  reverse(begin(S), end(S));
  return os << S;
}
ostream &operator<<(ostream &os, __uint128_t x) {
  if (x == 0) return os << 0;
  string S;
  while (x) S.push_back('0' + x % 10), x /= 10;
  reverse(begin(S), end(S));
  return os << S;
}

void in() {}
template <typename T, class... U>
void in(T &t, U &...u) {
  cin >> t;
  in(u...);
}

void out() { cout << "\n"; }
template <typename T, class... U, char sep = ' '>
void out(const T &t, const U &...u) {
  cout << t;
  if (sizeof...(u)) cout << sep;
  out(u...);
}

struct IoSetupNya {
  IoSetupNya() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    cout << fixed << setprecision(15);
    cerr << fixed << setprecision(7);
  }
} iosetupnya;

}  // namespace Nyaan
#line 64 "template/template.hpp"

// debug
#line 1 "template/debug.hpp"
namespace DebugImpl {

template <typename U, typename = void>
struct is_specialize : false_type {};
template <typename U>
struct is_specialize<
    U, typename conditional<false, typename U::iterator, void>::type>
    : true_type {};
template <typename U>
struct is_specialize<
    U, typename conditional<false, decltype(U::first), void>::type>
    : true_type {};
template <typename U>
struct is_specialize<U, enable_if_t<is_integral<U>::value, void>> : true_type {
};

void dump(const char& t) { cerr << t; }

void dump(const string& t) { cerr << t; }

void dump(const bool& t) { cerr << (t ? "true" : "false"); }

void dump(__int128_t t) {
  if (t == 0) cerr << 0;
  if (t < 0) cerr << '-', t = -t;
  string S;
  while (t) S.push_back('0' + t % 10), t /= 10;
  reverse(begin(S), end(S));
  cerr << S;
}

void dump(__uint128_t t) {
  if (t == 0) cerr << 0;
  string S;
  while (t) S.push_back('0' + t % 10), t /= 10;
  reverse(begin(S), end(S));
  cerr << S;
}

template <typename U,
          enable_if_t<!is_specialize<U>::value, nullptr_t> = nullptr>
void dump(const U& t) {
  cerr << t;
}

template <typename T>
void dump(const T& t, enable_if_t<is_integral<T>::value>* = nullptr) {
  string res;
  if (t == Nyaan::inf) res = "inf";
  if constexpr (is_signed<T>::value) {
    if (t == -Nyaan::inf) res = "-inf";
  }
  if constexpr (sizeof(T) == 8) {
    if (t == Nyaan::infLL) res = "inf";
    if constexpr (is_signed<T>::value) {
      if (t == -Nyaan::infLL) res = "-inf";
    }
  }
  if (res.empty()) res = to_string(t);
  cerr << res;
}

template <typename T, typename U>
void dump(const pair<T, U>&);
template <typename T>
void dump(const pair<T*, int>&);

template <typename T>
void dump(const T& t,
          enable_if_t<!is_void<typename T::iterator>::value>* = nullptr) {
  cerr << "[ ";
  for (auto it = t.begin(); it != t.end();) {
    dump(*it);
    cerr << (++it == t.end() ? "" : ", ");
  }
  cerr << " ]";
}

template <typename T, typename U>
void dump(const pair<T, U>& t) {
  cerr << "( ";
  dump(t.first);
  cerr << ", ";
  dump(t.second);
  cerr << " )";
}

template <typename T>
void dump(const pair<T*, int>& t) {
  cerr << "[ ";
  for (int i = 0; i < t.second; i++) {
    dump(t.first[i]);
    cerr << (i == t.second - 1 ? "" : ", ");
  }
  cerr << " ]";
}

void trace() { cerr << endl; }
template <typename Head, typename... Tail>
void trace(Head&& head, Tail&&... tail) {
  cerr << " ";
  dump(head);
  if (sizeof...(tail) != 0) cerr << ",";
  trace(std::forward<Tail>(tail)...);
}

}  // namespace DebugImpl

#ifdef NyaanDebug
#define trc(...)                            \
  do {                                      \
    cerr << "## " << #__VA_ARGS__ << " = "; \
    DebugImpl::trace(__VA_ARGS__);          \
  } while (0)
#else
#define trc(...) (void(0))
#endif

#ifdef NyaanLocal
#define trc2(...)                           \
  do {                                      \
    cerr << "## " << #__VA_ARGS__ << " = "; \
    DebugImpl::trace(__VA_ARGS__);          \
  } while (0)
#else
#define trc2(...) (void(0))
#endif
#line 67 "template/template.hpp"

// macro
#line 1 "template/macro.hpp"
#define each(x, v) for (auto&& x : v)
#define each2(x, y, v) for (auto&& [x, y] : v)
#define all(v) (v).begin(), (v).end()
#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)
#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)
#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)
#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)
#define reg(i, a, b) for (long long i = (a); i < (b); i++)
#define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--)
#define fi first
#define se second
#define ini(...)   \
  int __VA_ARGS__; \
  in(__VA_ARGS__)
#define inl(...)         \
  long long __VA_ARGS__; \
  in(__VA_ARGS__)
#define ins(...)      \
  string __VA_ARGS__; \
  in(__VA_ARGS__)
#define in2(s, t)                           \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i]);                         \
  }
#define in3(s, t, u)                        \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i]);                   \
  }
#define in4(s, t, u, v)                     \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i], v[i]);             \
  }
#define die(...)             \
  do {                       \
    Nyaan::out(__VA_ARGS__); \
    return;                  \
  } while (0)
#line 70 "template/template.hpp"

namespace Nyaan {
void solve();
}
int main() { Nyaan::solve(); }
#line 4 "verify/verify-unit-test/enumerate-convex.test.cpp"
//
#line 2 "math/enumerate-convex.hpp"

#line 6 "math/enumerate-convex.hpp"
using namespace std;

#line 2 "math/stern-brocot-tree.hpp"

#line 6 "math/stern-brocot-tree.hpp"
using namespace std;

// x / y (x > 0, y > 0) を管理、デフォルトで 1 / 1
// 入力が互いに素でない場合は gcd を取って格納
// seq : (1, 1) から (x, y) へのパス。右の子が正/左の子が負
template <typename Int>
struct SternBrocotTreeNode {
  using Node = SternBrocotTreeNode;

  Int lx, ly, x, y, rx, ry;
  vector<Int> seq;

  SternBrocotTreeNode() : lx(0), ly(1), x(1), y(1), rx(1), ry(0) {}

  SternBrocotTreeNode(Int X, Int Y) : SternBrocotTreeNode() {
    assert(1 <= X && 1 <= Y);
    Int g = gcd(X, Y);
    X /= g, Y /= g;
    while (min(X, Y) > 0) {
      if (X > Y) {
        Int d = X / Y;
        X -= d * Y;
        go_right(d - (X == 0 ? 1 : 0));
      } else {
        Int d = Y / X;
        Y -= d * X;
        go_left(d - (Y == 0 ? 1 : 0));
      }
    }
  }
  SternBrocotTreeNode(const pair<Int, Int> &xy)
      : SternBrocotTreeNode(xy.first, xy.second) {}
  SternBrocotTreeNode(const vector<Int> &_seq) : SternBrocotTreeNode() {
    for (const Int &d : _seq) {
      assert(d != 0);
      if (d > 0) go_right(d);
      if (d < 0) go_left(d);
    }
    assert(seq == _seq);
  }

  // pair<Int, Int> 型で分数を get
  pair<Int, Int> get() const { return make_pair(x, y); }
  // 区間の下限
  pair<Int, Int> lower_bound() const { return make_pair(lx, ly); }
  // 区間の上限
  pair<Int, Int> upper_bound() const { return make_pair(rx, ry); }

  // 根からの深さ
  Int depth() const {
    Int res = 0;
    for (auto &s : seq) res += abs(s);
    return res;
  }
  // 左の子に d 進む
  void go_left(Int d = 1) {
    if (d <= 0) return;
    if (seq.empty() or seq.back() > 0) seq.push_back(0);
    seq.back() -= d;
    rx += lx * d, ry += ly * d;
    x = rx + lx, y = ry + ly;
  }
  // 右の子に d 進む
  void go_right(Int d = 1) {
    if (d <= 0) return;
    if (seq.empty() or seq.back() < 0) seq.push_back(0);
    seq.back() += d;
    lx += rx * d, ly += ry * d;
    x = rx + lx, y = ry + ly;
  }
  // 親の方向に d 進む
  // d 進めたら true, 進めなかったら false を返す
  bool go_parent(Int d = 1) {
    if (d <= 0) return true;
    while (d != 0) {
      if (seq.empty()) return false;
      Int d2 = min(d, abs(seq.back()));
      if (seq.back() > 0) {
        x -= rx * d2, y -= ry * d2;
        lx = x - rx, ly = y - ry;
        seq.back() -= d2;
      } else {
        x -= lx * d2, y -= ly * d2;
        rx = x - lx, ry = y - ly;
        seq.back() += d2;
      }
      d -= d2;
      if (seq.back() == 0) seq.pop_back();
      if (d2 == Int{0}) break;
    }
    return true;
  }
  // SBT 上の LCA
  static Node lca(const Node &lhs, const Node &rhs) {
    Node n;
    for (int i = 0; i < min<int>(lhs.seq.size(), rhs.seq.size()); i++) {
      Int val1 = lhs.seq[i], val2 = rhs.seq[i];
      if ((val1 < 0) != (val2 < 0)) break;
      if (val1 < 0) n.go_left(min(-val1, -val2));
      if (val1 > 0) n.go_right(min(val1, val2));
      if (val1 != val2) break;
    }
    return n;
  }
  friend ostream &operator<<(ostream &os, const Node &rhs) {
    os << "\n";
    os << "L : ( " << rhs.lx << ", " << rhs.ly << " )\n";
    os << "M : ( " << rhs.x << ", " << rhs.y << " )\n";
    os << "R : ( " << rhs.rx << ", " << rhs.ry << " )\n";
    os << "seq : {";
    for (auto &x : rhs.seq) os << x << ", ";
    os << "} \n";
    return os;
  }
  friend bool operator<(const Node &lhs, const Node &rhs) {
    return lhs.x * rhs.y < rhs.x * lhs.y;
  }
  friend bool operator==(const Node &lhs, const Node &rhs) {
    return lhs.x == rhs.x and lhs.y == rhs.y;
  }
};

/**
 *  @brief Stern-Brocot Tree
 */
#line 9 "math/enumerate-convex.hpp"

// 下向き凸包の頂点列挙
// (xl, yl) 始点, x in [xl, xr]
// inside(x, y) : (x, y) が凸包内部か?
// candicate(x, y, c, d) : (x, y) が凸包外部にあるとする。
// 凸包内部の点 (x + sc, y + sd) が存在すればそのような s を返す
// 存在しなければ任意の値 (-1 でもよい) を返す
template <typename Int>
vector<pair<Int, Int>> enumerate_convex(
    Int xl, Int yl, Int xr, const function<bool(Int, Int)>& inside,
    const function<Int(Int, Int, Int, Int)>& candicate) {
  assert(xl <= xr);

  // inside かつ x <= xr
  auto f = [&](Int x, Int y) { return x <= xr && inside(x, y); };

  // (a, b) から (c, d) 方向に進めるだけ進む
  auto go = [&](Int a, Int b, Int c, Int d) -> Int {
    assert(f(a, b));
    Int r = 1, s = 0;
    while (f(a + r * c, b + r * d)) r *= 2;
    while ((r /= 2) != 0) {
      if (f(a + r * c, b + r * d)) s += r, a += r * c, b += r * d;
    }
    return s;
  };

  // (a, b) が out, (a + c * k, b + d * k) が in とする
  // out の間進めるだけ進む
  auto go2 = [&](Int a, Int b, Int c, Int d, Int k) {
    assert(!inside(a, b) and inside(a + c * k, b + d * k));
    Int ok = 0, ng = k;
    while (ok + 1 < ng) {
      Int m = (ok + ng) / 2;
      (inside(a + c * m, b + d * m) ? ng : ok) = m;
    }
    return ok;
  };

  vector<pair<Int, Int>> ps;
  Int x = xl, y = yl;
  assert(inside(x, y) and go(x, y, 0, -1) == 0);
  ps.emplace_back(x, y);
  while (x < xr) {
    Int a, b;
    if (f(x + 1, y)) {
      a = 1, b = 0;
    } else {
      SternBrocotTreeNode<Int> sb;
      while (true) {
        assert(f(x + sb.lx, y + sb.ly));
        assert(!f(x + sb.rx, y + sb.ry));
        if (f(x + sb.lx + sb.rx, y + sb.ly + sb.ry)) {
          Int s = go(x + sb.lx, y + sb.ly, sb.rx, sb.ry);
          assert(s > 0);
          sb.go_right(s);
        } else {
          Int s = candicate(x + sb.rx, y + sb.ry, sb.lx, sb.ly);
          if (s <= 0 || !inside(x + sb.lx * s + sb.rx, y + sb.ly * s + sb.ry)) {
            a = sb.lx, b = sb.ly;
            break;
          } else {
            Int t = go2(x + sb.rx, y + sb.ry, sb.lx, sb.ly, s);
            sb.go_left(t);
          }
        }
      }
    }
    Int s = go(x, y, a, b);
    x += a * s, y += b * s;
    ps.emplace_back(x, y);
  }
  return ps;
}
#line 2 "math/isqrt.hpp"

#line 4 "math/isqrt.hpp"
using namespace std;

// floor(sqrt(n)) を返す (ただし n が負の場合は 0 を返す)
long long isqrt(long long n) {
  if (n <= 0) return 0;
  long long x = sqrt(n);
  while ((x + 1) * (x + 1) <= n) x++;
  while (x * x > n) x--;
  return x;
}
#line 2 "math/two-square.hpp"

#line 2 "internal/internal-math.hpp"

#line 2 "internal/internal-type-traits.hpp"

#line 4 "internal/internal-type-traits.hpp"
using namespace std;

namespace internal {
template <typename T>
using is_broadly_integral =
    typename conditional_t<is_integral_v<T> || is_same_v<T, __int128_t> ||
                               is_same_v<T, __uint128_t>,
                           true_type, false_type>::type;

template <typename T>
using is_broadly_signed =
    typename conditional_t<is_signed_v<T> || is_same_v<T, __int128_t>,
                           true_type, false_type>::type;

template <typename T>
using is_broadly_unsigned =
    typename conditional_t<is_unsigned_v<T> || is_same_v<T, __uint128_t>,
                           true_type, false_type>::type;

#define ENABLE_VALUE(x) \
  template <typename T> \
  constexpr bool x##_v = x<T>::value;

ENABLE_VALUE(is_broadly_integral);
ENABLE_VALUE(is_broadly_signed);
ENABLE_VALUE(is_broadly_unsigned);
#undef ENABLE_VALUE

#define ENABLE_HAS_TYPE(var)                                   \
  template <class, class = void>                               \
  struct has_##var : false_type {};                            \
  template <class T>                                           \
  struct has_##var<T, void_t<typename T::var>> : true_type {}; \
  template <class T>                                           \
  constexpr auto has_##var##_v = has_##var<T>::value;

#define ENABLE_HAS_VAR(var)                                     \
  template <class, class = void>                                \
  struct has_##var : false_type {};                             \
  template <class T>                                            \
  struct has_##var<T, void_t<decltype(T::var)>> : true_type {}; \
  template <class T>                                            \
  constexpr auto has_##var##_v = has_##var<T>::value;

}  // namespace internal
#line 4 "internal/internal-math.hpp"

namespace internal {

#line 10 "internal/internal-math.hpp"
using namespace std;

// a mod p
template <typename T>
T safe_mod(T a, T p) {
  a %= p;
  if constexpr (is_broadly_signed_v<T>) {
    if (a < 0) a += p;
  }
  return a;
}

// 返り値:pair(g, x)
// s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
template <typename T>
pair<T, T> inv_gcd(T a, T p) {
  static_assert(is_broadly_signed_v<T>);
  a = safe_mod(a, p);
  if (a == 0) return {p, 0};
  T b = p, x = 1, y = 0;
  while (a != 0) {
    T q = b / a;
    swap(a, b %= a);
    swap(x, y -= q * x);
  }
  if (y < 0) y += p / b;
  return {b, y};
}

// 返り値 : a^{-1} mod p
// gcd(a, p) != 1 が必要
template <typename T>
T inv(T a, T p) {
  static_assert(is_broadly_signed_v<T>);
  a = safe_mod(a, p);
  T b = p, x = 1, y = 0;
  while (a != 0) {
    T q = b / a;
    swap(a, b %= a);
    swap(x, y -= q * x);
  }
  assert(b == 1);
  return y < 0 ? y + p : y;
}

// T : 底の型
// U : T*T がオーバーフローしない かつ 指数の型
template <typename T, typename U>
T modpow(T a, U n, T p) {
  a = safe_mod(a, p);
  T ret = 1 % p;
  while (n != 0) {
    if (n % 2 == 1) ret = U(ret) * a % p;
    a = U(a) * a % p;
    n /= 2;
  }
  return ret;
}

// 返り値 : pair(rem, mod)
// 解なしのときは {0, 0} を返す
template <typename T>
pair<T, T> crt(const vector<T>& r, const vector<T>& m) {
  static_assert(is_broadly_signed_v<T>);
  assert(r.size() == m.size());
  int n = int(r.size());
  T r0 = 0, m0 = 1;
  for (int i = 0; i < n; i++) {
    assert(1 <= m[i]);
    T r1 = safe_mod(r[i], m[i]), m1 = m[i];
    if (m0 < m1) swap(r0, r1), swap(m0, m1);
    if (m0 % m1 == 0) {
      if (r0 % m1 != r1) return {0, 0};
      continue;
    }
    auto [g, im] = inv_gcd(m0, m1);
    T u1 = m1 / g;
    if ((r1 - r0) % g) return {0, 0};
    T x = (r1 - r0) / g % u1 * im % u1;
    r0 += x * m0;
    m0 *= u1;
    if (r0 < 0) r0 += m0;
  }
  return {r0, m0};
}

}  // namespace internal
#line 2 "prime/fast-factorize.hpp"

#line 6 "prime/fast-factorize.hpp"
using namespace std;

#line 2 "misc/rng.hpp"

#line 2 "internal/internal-seed.hpp"

#line 4 "internal/internal-seed.hpp"
using namespace std;

namespace internal {
unsigned long long non_deterministic_seed() {
  unsigned long long m =
      chrono::duration_cast<chrono::nanoseconds>(
          chrono::high_resolution_clock::now().time_since_epoch())
          .count();
  m ^= 9845834732710364265uLL;
  m ^= m << 24, m ^= m >> 31, m ^= m << 35;
  return m;
}
unsigned long long deterministic_seed() { return 88172645463325252UL; }

// 64 bit の seed 値を生成 (手元では seed 固定)
// 連続で呼び出すと同じ値が何度も返ってくるので注意
// #define RANDOMIZED_SEED するとシードがランダムになる
unsigned long long seed() {
#if defined(NyaanLocal) && !defined(RANDOMIZED_SEED)
  return deterministic_seed();
#else
  return non_deterministic_seed();
#endif
}

}  // namespace internal
#line 4 "misc/rng.hpp"

namespace my_rand {
using i64 = long long;
using u64 = unsigned long long;

// [0, 2^64 - 1)
u64 rng() {
  static u64 _x = internal::seed();
  return _x ^= _x << 7, _x ^= _x >> 9;
}

// [l, r]
i64 rng(i64 l, i64 r) {
  assert(l <= r);
  return l + rng() % u64(r - l + 1);
}

// [l, r)
i64 randint(i64 l, i64 r) {
  assert(l < r);
  return l + rng() % u64(r - l);
}

// choose n numbers from [l, r) without overlapping
vector<i64> randset(i64 l, i64 r, i64 n) {
  assert(l <= r && n <= r - l);
  unordered_set<i64> s;
  for (i64 i = n; i; --i) {
    i64 m = randint(l, r + 1 - i);
    if (s.find(m) != s.end()) m = r - i;
    s.insert(m);
  }
  vector<i64> ret;
  for (auto& x : s) ret.push_back(x);
  sort(begin(ret), end(ret));
  return ret;
}

// [0.0, 1.0)
double rnd() { return rng() * 5.42101086242752217004e-20; }
// [l, r)
double rnd(double l, double r) {
  assert(l < r);
  return l + rnd() * (r - l);
}

template <typename T>
void randshf(vector<T>& v) {
  int n = v.size();
  for (int i = 1; i < n; i++) swap(v[i], v[randint(0, i + 1)]);
}

}  // namespace my_rand

using my_rand::randint;
using my_rand::randset;
using my_rand::randshf;
using my_rand::rnd;
using my_rand::rng;
#line 2 "modint/arbitrary-montgomery-modint.hpp"

#line 4 "modint/arbitrary-montgomery-modint.hpp"
using namespace std;

template <typename Int, typename UInt, typename Long, typename ULong, int id>
struct ArbitraryLazyMontgomeryModIntBase {
  using mint = ArbitraryLazyMontgomeryModIntBase;

  inline static UInt mod;
  inline static UInt r;
  inline static UInt n2;
  static constexpr int bit_length = sizeof(UInt) * 8;

  static UInt get_r() {
    UInt ret = mod;
    while (mod * ret != 1) ret *= UInt(2) - mod * ret;
    return ret;
  }
  static void set_mod(UInt m) {
    assert(m < (UInt(1u) << (bit_length - 2)));
    assert((m & 1) == 1);
    mod = m, n2 = -ULong(m) % m, r = get_r();
  }
  UInt a;

  ArbitraryLazyMontgomeryModIntBase() : a(0) {}
  ArbitraryLazyMontgomeryModIntBase(const Long &b)
      : a(reduce(ULong(b % mod + mod) * n2)){};

  static UInt reduce(const ULong &b) {
    return (b + ULong(UInt(b) * UInt(-r)) * mod) >> bit_length;
  }

  mint &operator+=(const mint &b) {
    if (Int(a += b.a - 2 * mod) < 0) a += 2 * mod;
    return *this;
  }
  mint &operator-=(const mint &b) {
    if (Int(a -= b.a) < 0) a += 2 * mod;
    return *this;
  }
  mint &operator*=(const mint &b) {
    a = reduce(ULong(a) * b.a);
    return *this;
  }
  mint &operator/=(const mint &b) {
    *this *= b.inverse();
    return *this;
  }

  mint operator+(const mint &b) const { return mint(*this) += b; }
  mint operator-(const mint &b) const { return mint(*this) -= b; }
  mint operator*(const mint &b) const { return mint(*this) *= b; }
  mint operator/(const mint &b) const { return mint(*this) /= b; }

  bool operator==(const mint &b) const {
    return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
  }
  bool operator!=(const mint &b) const {
    return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
  }
  mint operator-() const { return mint(0) - mint(*this); }
  mint operator+() const { return mint(*this); }

  mint pow(ULong n) const {
    mint ret(1), mul(*this);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul, n >>= 1;
    }
    return ret;
  }

  friend ostream &operator<<(ostream &os, const mint &b) {
    return os << b.get();
  }

  friend istream &operator>>(istream &is, mint &b) {
    Long t;
    is >> t;
    b = ArbitraryLazyMontgomeryModIntBase(t);
    return (is);
  }

  mint inverse() const {
    Int x = get(), y = get_mod(), u = 1, v = 0;
    while (y > 0) {
      Int t = x / y;
      swap(x -= t * y, y);
      swap(u -= t * v, v);
    }
    return mint{u};
  }

  UInt get() const {
    UInt ret = reduce(a);
    return ret >= mod ? ret - mod : ret;
  }

  static UInt get_mod() { return mod; }
};

// id に適当な乱数を割り当てて使う
template <int id>
using ArbitraryLazyMontgomeryModInt =
    ArbitraryLazyMontgomeryModIntBase<int, unsigned int, long long,
                                      unsigned long long, id>;
template <int id>
using ArbitraryLazyMontgomeryModInt64bit =
    ArbitraryLazyMontgomeryModIntBase<long long, unsigned long long, __int128_t,
                                      __uint128_t, id>;
#line 2 "prime/miller-rabin.hpp"

#line 4 "prime/miller-rabin.hpp"
using namespace std;

#line 8 "prime/miller-rabin.hpp"

namespace fast_factorize {

template <typename T, typename U>
bool miller_rabin(const T& n, vector<T> ws) {
  if (n <= 2) return n == 2;
  if (n % 2 == 0) return false;

  T d = n - 1;
  while (d % 2 == 0) d /= 2;
  U e = 1, rev = n - 1;
  for (T w : ws) {
    if (w % n == 0) continue;
    T t = d;
    U y = internal::modpow<T, U>(w, t, n);
    while (t != n - 1 && y != e && y != rev) y = y * y % n, t *= 2;
    if (y != rev && t % 2 == 0) return false;
  }
  return true;
}

bool miller_rabin_u64(unsigned long long n) {
  return miller_rabin<unsigned long long, __uint128_t>(
      n, {2, 325, 9375, 28178, 450775, 9780504, 1795265022});
}

template <typename mint>
bool miller_rabin(unsigned long long n, vector<unsigned long long> ws) {
  if (n <= 2) return n == 2;
  if (n % 2 == 0) return false;

  if (mint::get_mod() != n) mint::set_mod(n);
  unsigned long long d = n - 1;
  while (~d & 1) d >>= 1;
  mint e = 1, rev = n - 1;
  for (unsigned long long w : ws) {
    if (w % n == 0) continue;
    unsigned long long t = d;
    mint y = mint(w).pow(t);
    while (t != n - 1 && y != e && y != rev) y *= y, t *= 2;
    if (y != rev && t % 2 == 0) return false;
  }
  return true;
}

bool is_prime(unsigned long long n) {
  using mint32 = ArbitraryLazyMontgomeryModInt<96229631>;
  using mint64 = ArbitraryLazyMontgomeryModInt64bit<622196072>;

  if (n <= 2) return n == 2;
  if (n % 2 == 0) return false;
  if (n < (1uLL << 30)) {
    return miller_rabin<mint32>(n, {2, 7, 61});
  } else if (n < (1uLL << 62)) {
    return miller_rabin<mint64>(
        n, {2, 325, 9375, 28178, 450775, 9780504, 1795265022});
  } else {
    return miller_rabin_u64(n);
  }
}

}  // namespace fast_factorize

using fast_factorize::is_prime;

/**
 * @brief Miller-Rabin primality test
 */
#line 12 "prime/fast-factorize.hpp"

namespace fast_factorize {
using u64 = uint64_t;

template <typename mint, typename T>
T pollard_rho(T n) {
  if (~n & 1) return 2;
  if (is_prime(n)) return n;
  if (mint::get_mod() != n) mint::set_mod(n);
  mint R, one = 1;
  auto f = [&](mint x) { return x * x + R; };
  auto rnd_ = [&]() { return rng() % (n - 2) + 2; };
  while (1) {
    mint x, y, ys, q = one;
    R = rnd_(), y = rnd_();
    T g = 1;
    constexpr int m = 128;
    for (int r = 1; g == 1; r <<= 1) {
      x = y;
      for (int i = 0; i < r; ++i) y = f(y);
      for (int k = 0; g == 1 && k < r; k += m) {
        ys = y;
        for (int i = 0; i < m && i < r - k; ++i) q *= x - (y = f(y));
        g = gcd(q.get(), n);
      }
    }
    if (g == n) do
        g = gcd((x - (ys = f(ys))).get(), n);
      while (g == 1);
    if (g != n) return g;
  }
  exit(1);
}

using i64 = long long;

vector<i64> inner_factorize(u64 n) {
  using mint32 = ArbitraryLazyMontgomeryModInt<452288976>;
  using mint64 = ArbitraryLazyMontgomeryModInt64bit<401243123>;

  if (n <= 1) return {};
  u64 p;
  if (n <= (1LL << 30)) {
    p = pollard_rho<mint32, uint32_t>(n);
  } else if (n <= (1LL << 62)) {
    p = pollard_rho<mint64, uint64_t>(n);
  } else {
    exit(1);
  }
  if (p == n) return {i64(p)};
  auto l = inner_factorize(p);
  auto r = inner_factorize(n / p);
  copy(begin(r), end(r), back_inserter(l));
  return l;
}

vector<i64> factorize(u64 n) {
  auto ret = inner_factorize(n);
  sort(begin(ret), end(ret));
  return ret;
}

map<i64, i64> factor_count(u64 n) {
  map<i64, i64> mp;
  for (auto &x : factorize(n)) mp[x]++;
  return mp;
}

vector<i64> divisors(u64 n) {
  if (n == 0) return {};
  vector<pair<i64, i64>> v;
  for (auto &p : factorize(n)) {
    if (v.empty() || v.back().first != p) {
      v.emplace_back(p, 1);
    } else {
      v.back().second++;
    }
  }
  vector<i64> ret;
  auto f = [&](auto rc, int i, i64 x) -> void {
    if (i == (int)v.size()) {
      ret.push_back(x);
      return;
    }
    rc(rc, i + 1, x);
    for (int j = 0; j < v[i].second; j++) rc(rc, i + 1, x *= v[i].first);
  };
  f(f, 0, 1);
  sort(begin(ret), end(ret));
  return ret;
}

}  // namespace fast_factorize

using fast_factorize::divisors;
using fast_factorize::factor_count;
using fast_factorize::factorize;

/**
 * @brief 高速素因数分解(Miller Rabin/Pollard's Rho)
 * @docs docs/prime/fast-factorize.md
 */
#line 2 "math/gaussian-integer.hpp"

// x + yi
template <typename T>
struct Gaussian_Integer {
  T x, y;
  using G = Gaussian_Integer;

  Gaussian_Integer(T _x = 0, T _y = 0) : x(_x), y(_y) {}
  Gaussian_Integer(const pair<T, T>& p) : x(p.fi), y(p.se) {}

  T norm() const { return x * x + y * y; }
  G conj() const { return G{x, -y}; }

  G operator+(const G& r) const { return G{x + r.x, y + r.y}; }
  G operator-(const G& r) const { return G{x - r.x, y - r.y}; }
  G operator*(const G& r) const {
    return G{x * r.x - y * r.y, x * r.y + y * r.x};
  }
  G operator/(const G& r) const {
    G g = G{*this} * r.conj();
    T n = r.norm();
    g.x += n / 2, g.y += n / 2;
    return G{g.x / n - (g.x % n < 0), g.y / n - (g.y % n < 0)};
  }
  G operator%(const G& r) const { return G{*this} - G{*this} / r * r; }

  G& operator+=(const G& r) { return *this = G{*this} + r; }
  G& operator-=(const G& r) { return *this = G{*this} - r; }
  G& operator*=(const G& r) { return *this = G{*this} * r; }
  G& operator/=(const G& r) { return *this = G{*this} / r; }
  G& operator%=(const G& r) { return *this = G{*this} % r; }
  G operator-() const { return G{-x, -y}; }
  G operator+() const { return G{*this}; }
  bool operator==(const G& g) const { return x == g.x && y == g.y; }
  bool operator!=(const G& g) const { return x != g.x || y != g.y; }

  G pow(__int128_t e) const {
    G res{1}, a{*this};
    while (e) {
      if (e & 1) res *= a;
      a *= a, e >>= 1;
    }
    return res;
  }

  friend G gcd(G a, G b) {
    while (b != G{0, 0}) {
      trc(a, b, a / b, a % b);
      swap(a %= b, b);
    }
    return a;
  }
  friend ostream& operator<<(ostream& os, const G& rhs) {
    return os << rhs.x << " " << rhs.y;
  }
};
#line 6 "math/two-square.hpp"

// 解が存在しない場合 (-1, -1) を返す
Gaussian_Integer<__int128_t> solve_norm_equation_prime(long long p) {
  if (p % 4 == 3) return {-1, -1};
  if (p == 2) return {1, 1};
  long long x = 1;
  while (true) {
    x++;
    long long z = internal::modpow<long long, __int128_t>(x, (p - 1) / 4, p);
    if (__int128_t(z) * z % p == p - 1) {
      x = z;
      break;
    }
  }
  long long y = 1, k = (__int128_t(x) * x + 1) / p;
  while (k > 1) {
    long long B = x % k, D = y % k;
    if (B < 0) B += k;
    if (D < 0) D += k;
    if (B * 2 > k) B -= k;
    if (D * 2 > k) D -= k;
    long long nx = (__int128_t(x) * B + __int128_t(y) * D) / k;
    long long ny = (__int128_t(x) * D - __int128_t(y) * B) / k;
    x = nx, y = ny;
    k = (__int128_t(x) * x + __int128_t(y) * y) / p;
  }
  return {x, y};
}

// p^e が long long に収まる
vector<Gaussian_Integer<__int128_t>> solve_norm_equation_prime_power(
    long long p, long long e) {
  using G = Gaussian_Integer<__int128_t>;
  if (p % 4 == 3) {
    if (e % 2 == 1) return {};
    long long x = 1;
    for (int i = 0; i < e / 2; i++) x *= p;
    return {G{x}};
  }
  if (p == 2) return {G{1, 1}.pow(e)};
  G pi = solve_norm_equation_prime(p);
  vector<G> pows(e + 1);
  pows[0] = 1;
  for (int i = 1; i <= e; i++) pows[i] = pows[i - 1] * pi;
  vector<G> res(e + 1);
  for (int i = 0; i <= e; i++) res[i] = pows[i] * (pows[e - i].conj());
  return res;
}

// 0 <= arg < 90 の範囲の解のみ返す
vector<Gaussian_Integer<__int128_t>> solve_norm_equation(long long N) {
  using G = Gaussian_Integer<__int128_t>;
  if (N < 0) return {};
  if (N == 0) return {G{0}};
  auto pes = factor_count(N);
  for (auto& [p, e] : pes) {
    if (p % 4 == 3 && e % 2 == 1) return {};
  }
  vector<G> res{G{1}};
  for (auto& [p, e] : pes) {
    vector<G> cur = solve_norm_equation_prime_power(p, e);
    vector<G> nxt;
    for (auto& g1 : res) {
      for (auto& g2 : cur) nxt.push_back(g1 * g2);
    }
    res = nxt;
  }

  for (auto& g : res) {
    while (g.x <= 0 || g.y < 0) g = G{-g.y, g.x};
  }
  return res;
}

// x,y 両方非負のみ, 辞書順で返す
vector<pair<long long, long long>> two_square(long long N) {
  if (N < 0) return {};
  if (N == 0) return {{0, 0}};
  vector<pair<long long, long long>> ans;
  for (auto& g : solve_norm_equation(N)) {
    ans.emplace_back(g.x, g.y);
    if (g.y == 0) ans.emplace_back(g.y, g.x);
  }
  sort(begin(ans), end(ans));
  return ans;
}
#line 9 "verify/verify-unit-test/enumerate-convex.test.cpp"
//
using namespace Nyaan;

vector<pair<long long, long long>> calc(ll N) {
  ll m = isqrt(N);
  // (0, m) を中心とする半径 sqrt(N) の円
  auto inside = [&](ll x, ll y) {
    return y >= m or x * x + (y - m) * (y - m) <= N;
  };
  auto candicate = [&](ll x, ll y, ll c, ll d) {
    // (x + sc)^2 + (y - m + sd)^2 <= N
    ll A = c * c + d * d;
    ll B = 2 * c * x + 2 * d * (y - m);
    // A s^2 + B s + const <= 0
    ll num = -B, den = 2 * A;
    ll quo = num / den, rem = num % den;
    if (rem < 0) quo--, rem += den;
    if (2 * rem > den) quo++, rem -= den;
    return quo;
  };

  auto ans = enumerate_convex<ll>(0, 0, m, inside, candicate);
  vector<pair<long long, long long>> res;
  each2(x, y, ans) if (x * x + (y - m) * (y - m) == N) {
    res.emplace_back(x, m - y);
  }
  sort(begin(res), end(res));
  return res;
}

void check(long long N) {
  auto ac = two_square(N);
  auto ad = calc(N);
  assert(ac == ad);
}

void q() {
  rep1(N, 1000) check(N);
  rep(t, 100) check(rng(1001, TEN(9)));
  check(TEN(18));

  trc2("OK");
  inl(a, b);
  out(a + b);
}

void Nyaan::solve() {
  int t = 1;
  // in(t);
  while (t--) q();
}
Back to top page