Nyaan's Library

This documentation is automatically generated by online-judge-tools/verification-helper

View on GitHub

:heavy_check_mark: verify/verify-yosupo-fps/yosupo-composition-fast.test.cpp

Depends on

Code

#define PROBLEM \
  "https://judge.yosupo.jp/problem/composition_of_formal_power_series"

#include "../../template/template.hpp"
#include "../../fps/formal-power-series.hpp"
#include "../../fps/fps-composition-fast-old.hpp"
#include "../../fps/ntt-friendly-fps.hpp"
#include "../../misc/fastio.hpp"
#include "../../modint/montgomery-modint.hpp"

using namespace Nyaan; void Nyaan::solve() {
  using mint = LazyMontgomeryModInt<998244353>;
  using fps = FormalPowerSeries<mint>;
  int N;
  rd(N);
  fps f(N), g(N);
  for (int i = 0; i < N; i++) {
    int n;
    rd(n);
    f[i] = n;
  }
  for (int i = 0; i < N; i++) {
    int n;
    rd(n);
    g[i] = n;
  }
  fps R = Composition(g, f);
  for (int i = 0; i < (int)R.size(); i++) {
    if (i) wt(' ');
    wt(R[i].get());
  }
  wt('\n');
}
#line 1 "verify/verify-yosupo-fps/yosupo-composition-fast.test.cpp"
#define PROBLEM \
  "https://judge.yosupo.jp/problem/composition_of_formal_power_series"

#line 2 "template/template.hpp"
using namespace std;

// intrinstic
#include <immintrin.h>

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

// utility
#line 1 "template/util.hpp"
namespace Nyaan {
using ll = long long;
using i64 = long long;
using u64 = unsigned long long;
using i128 = __int128_t;
using u128 = __uint128_t;

template <typename T>
using V = vector<T>;
template <typename T>
using VV = vector<vector<T>>;
using vi = vector<int>;
using vl = vector<long long>;
using vd = V<double>;
using vs = V<string>;
using vvi = vector<vector<int>>;
using vvl = vector<vector<long long>>;
template <typename T>
using minpq = priority_queue<T, vector<T>, greater<T>>;

template <typename T, typename U>
struct P : pair<T, U> {
  template <typename... Args>
  P(Args... args) : pair<T, U>(args...) {}

  using pair<T, U>::first;
  using pair<T, U>::second;

  P &operator+=(const P &r) {
    first += r.first;
    second += r.second;
    return *this;
  }
  P &operator-=(const P &r) {
    first -= r.first;
    second -= r.second;
    return *this;
  }
  P &operator*=(const P &r) {
    first *= r.first;
    second *= r.second;
    return *this;
  }
  template <typename S>
  P &operator*=(const S &r) {
    first *= r, second *= r;
    return *this;
  }
  P operator+(const P &r) const { return P(*this) += r; }
  P operator-(const P &r) const { return P(*this) -= r; }
  P operator*(const P &r) const { return P(*this) *= r; }
  template <typename S>
  P operator*(const S &r) const {
    return P(*this) *= r;
  }
  P operator-() const { return P{-first, -second}; }
};

using pl = P<ll, ll>;
using pi = P<int, int>;
using vp = V<pl>;

constexpr int inf = 1001001001;
constexpr long long infLL = 4004004004004004004LL;

template <typename T>
int sz(const T &t) {
  return t.size();
}

template <typename T, typename U>
inline bool amin(T &x, U y) {
  return (y < x) ? (x = y, true) : false;
}
template <typename T, typename U>
inline bool amax(T &x, U y) {
  return (x < y) ? (x = y, true) : false;
}

template <typename T>
inline T Max(const vector<T> &v) {
  return *max_element(begin(v), end(v));
}
template <typename T>
inline T Min(const vector<T> &v) {
  return *min_element(begin(v), end(v));
}
template <typename T>
inline long long Sum(const vector<T> &v) {
  return accumulate(begin(v), end(v), 0LL);
}

template <typename T>
int lb(const vector<T> &v, const T &a) {
  return lower_bound(begin(v), end(v), a) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, const T &a) {
  return upper_bound(begin(v), end(v), a) - begin(v);
}

constexpr long long TEN(int n) {
  long long ret = 1, x = 10;
  for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1);
  return ret;
}

template <typename T, typename U>
pair<T, U> mkp(const T &t, const U &u) {
  return make_pair(t, u);
}

template <typename T>
vector<T> mkrui(const vector<T> &v, bool rev = false) {
  vector<T> ret(v.size() + 1);
  if (rev) {
    for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1];
  } else {
    for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];
  }
  return ret;
};

template <typename T>
vector<T> mkuni(const vector<T> &v) {
  vector<T> ret(v);
  sort(ret.begin(), ret.end());
  ret.erase(unique(ret.begin(), ret.end()), ret.end());
  return ret;
}

template <typename F>
vector<int> mkord(int N, F f) {
  vector<int> ord(N);
  iota(begin(ord), end(ord), 0);
  sort(begin(ord), end(ord), f);
  return ord;
}

template <typename T>
vector<int> mkinv(vector<T> &v) {
  int max_val = *max_element(begin(v), end(v));
  vector<int> inv(max_val + 1, -1);
  for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i;
  return inv;
}

vector<int> mkiota(int n) {
  vector<int> ret(n);
  iota(begin(ret), end(ret), 0);
  return ret;
}

template <typename T>
T mkrev(const T &v) {
  T w{v};
  reverse(begin(w), end(w));
  return w;
}

template <typename T>
bool nxp(vector<T> &v) {
  return next_permutation(begin(v), end(v));
}

// 返り値の型は入力の T に依存
// i 要素目 : [0, a[i])
template <typename T>
vector<vector<T>> product(const vector<T> &a) {
  vector<vector<T>> ret;
  vector<T> v;
  auto dfs = [&](auto rc, int i) -> void {
    if (i == (int)a.size()) {
      ret.push_back(v);
      return;
    }
    for (int j = 0; j < a[i]; j++) v.push_back(j), rc(rc, i + 1), v.pop_back();
  };
  dfs(dfs, 0);
  return ret;
}

// F : function(void(T&)), mod を取る操作
// T : 整数型のときはオーバーフローに注意する
template <typename T>
T Power(T a, long long n, const T &I, const function<void(T &)> &f) {
  T res = I;
  for (; n; f(a = a * a), n >>= 1) {
    if (n & 1) f(res = res * a);
  }
  return res;
}
// T : 整数型のときはオーバーフローに注意する
template <typename T>
T Power(T a, long long n, const T &I) {
  return Power(a, n, I, function<void(T &)>{[](T &) -> void {}});
}

}  // namespace Nyaan
#line 58 "template/template.hpp"

// bit operation
#line 1 "template/bitop.hpp"
namespace Nyaan {
__attribute__((target("popcnt"))) inline int popcnt(const u64 &a) {
  return _mm_popcnt_u64(a);
}
inline int lsb(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int ctz(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int msb(const u64 &a) { return a ? 63 - __builtin_clzll(a) : -1; }
template <typename T>
inline int gbit(const T &a, int i) {
  return (a >> i) & 1;
}
template <typename T>
inline void sbit(T &a, int i, bool b) {
  if (gbit(a, i) != b) a ^= T(1) << i;
}
constexpr long long PW(int n) { return 1LL << n; }
constexpr long long MSK(int n) { return (1LL << n) - 1; }
}  // namespace Nyaan
#line 61 "template/template.hpp"

// inout
#line 1 "template/inout.hpp"
namespace Nyaan {

template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
  os << p.first << " " << p.second;
  return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
  is >> p.first >> p.second;
  return is;
}

template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
  int s = (int)v.size();
  for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
  return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
  for (auto &x : v) is >> x;
  return is;
}

istream &operator>>(istream &is, __int128_t &x) {
  string S;
  is >> S;
  x = 0;
  int flag = 0;
  for (auto &c : S) {
    if (c == '-') {
      flag = true;
      continue;
    }
    x *= 10;
    x += c - '0';
  }
  if (flag) x = -x;
  return is;
}

istream &operator>>(istream &is, __uint128_t &x) {
  string S;
  is >> S;
  x = 0;
  for (auto &c : S) {
    x *= 10;
    x += c - '0';
  }
  return is;
}

ostream &operator<<(ostream &os, __int128_t x) {
  if (x == 0) return os << 0;
  if (x < 0) os << '-', x = -x;
  string S;
  while (x) S.push_back('0' + x % 10), x /= 10;
  reverse(begin(S), end(S));
  return os << S;
}
ostream &operator<<(ostream &os, __uint128_t x) {
  if (x == 0) return os << 0;
  string S;
  while (x) S.push_back('0' + x % 10), x /= 10;
  reverse(begin(S), end(S));
  return os << S;
}

void in() {}
template <typename T, class... U>
void in(T &t, U &...u) {
  cin >> t;
  in(u...);
}

void out() { cout << "\n"; }
template <typename T, class... U, char sep = ' '>
void out(const T &t, const U &...u) {
  cout << t;
  if (sizeof...(u)) cout << sep;
  out(u...);
}

struct IoSetupNya {
  IoSetupNya() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    cout << fixed << setprecision(15);
    cerr << fixed << setprecision(7);
  }
} iosetupnya;

}  // namespace Nyaan
#line 64 "template/template.hpp"

// debug
#line 1 "template/debug.hpp"
namespace DebugImpl {

template <typename U, typename = void>
struct is_specialize : false_type {};
template <typename U>
struct is_specialize<
    U, typename conditional<false, typename U::iterator, void>::type>
    : true_type {};
template <typename U>
struct is_specialize<
    U, typename conditional<false, decltype(U::first), void>::type>
    : true_type {};
template <typename U>
struct is_specialize<U, enable_if_t<is_integral<U>::value, void>> : true_type {
};

void dump(const char& t) { cerr << t; }

void dump(const string& t) { cerr << t; }

void dump(const bool& t) { cerr << (t ? "true" : "false"); }

void dump(__int128_t t) {
  if (t == 0) cerr << 0;
  if (t < 0) cerr << '-', t = -t;
  string S;
  while (t) S.push_back('0' + t % 10), t /= 10;
  reverse(begin(S), end(S));
  cerr << S;
}

void dump(__uint128_t t) {
  if (t == 0) cerr << 0;
  string S;
  while (t) S.push_back('0' + t % 10), t /= 10;
  reverse(begin(S), end(S));
  cerr << S;
}

template <typename U,
          enable_if_t<!is_specialize<U>::value, nullptr_t> = nullptr>
void dump(const U& t) {
  cerr << t;
}

template <typename T>
void dump(const T& t, enable_if_t<is_integral<T>::value>* = nullptr) {
  string res;
  if (t == Nyaan::inf) res = "inf";
  if constexpr (is_signed<T>::value) {
    if (t == -Nyaan::inf) res = "-inf";
  }
  if constexpr (sizeof(T) == 8) {
    if (t == Nyaan::infLL) res = "inf";
    if constexpr (is_signed<T>::value) {
      if (t == -Nyaan::infLL) res = "-inf";
    }
  }
  if (res.empty()) res = to_string(t);
  cerr << res;
}

template <typename T, typename U>
void dump(const pair<T, U>&);
template <typename T>
void dump(const pair<T*, int>&);

template <typename T>
void dump(const T& t,
          enable_if_t<!is_void<typename T::iterator>::value>* = nullptr) {
  cerr << "[ ";
  for (auto it = t.begin(); it != t.end();) {
    dump(*it);
    cerr << (++it == t.end() ? "" : ", ");
  }
  cerr << " ]";
}

template <typename T, typename U>
void dump(const pair<T, U>& t) {
  cerr << "( ";
  dump(t.first);
  cerr << ", ";
  dump(t.second);
  cerr << " )";
}

template <typename T>
void dump(const pair<T*, int>& t) {
  cerr << "[ ";
  for (int i = 0; i < t.second; i++) {
    dump(t.first[i]);
    cerr << (i == t.second - 1 ? "" : ", ");
  }
  cerr << " ]";
}

void trace() { cerr << endl; }
template <typename Head, typename... Tail>
void trace(Head&& head, Tail&&... tail) {
  cerr << " ";
  dump(head);
  if (sizeof...(tail) != 0) cerr << ",";
  trace(forward<Tail>(tail)...);
}

}  // namespace DebugImpl

#ifdef NyaanDebug
#define trc(...)                            \
  do {                                      \
    cerr << "## " << #__VA_ARGS__ << " = "; \
    DebugImpl::trace(__VA_ARGS__);          \
  } while (0)
#else
#define trc(...) (void(0))
#endif

#ifdef NyaanLocal
#define trc2(...)                           \
  do {                                      \
    cerr << "## " << #__VA_ARGS__ << " = "; \
    DebugImpl::trace(__VA_ARGS__);          \
  } while (0)
#else
#define trc2(...) (void(0))
#endif
#line 67 "template/template.hpp"

// macro
#line 1 "template/macro.hpp"
#define each(x, v) for (auto&& x : v)
#define each2(x, y, v) for (auto&& [x, y] : v)
#define all(v) (v).begin(), (v).end()
#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)
#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)
#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)
#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)
#define reg(i, a, b) for (long long i = (a); i < (b); i++)
#define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--)
#define fi first
#define se second
#define ini(...)   \
  int __VA_ARGS__; \
  in(__VA_ARGS__)
#define inl(...)         \
  long long __VA_ARGS__; \
  in(__VA_ARGS__)
#define ins(...)      \
  string __VA_ARGS__; \
  in(__VA_ARGS__)
#define in2(s, t)                           \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i]);                         \
  }
#define in3(s, t, u)                        \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i]);                   \
  }
#define in4(s, t, u, v)                     \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i], v[i]);             \
  }
#define die(...)             \
  do {                       \
    Nyaan::out(__VA_ARGS__); \
    return;                  \
  } while (0)
#line 70 "template/template.hpp"

namespace Nyaan {
void solve();
}
int main() { Nyaan::solve(); }
#line 2 "fps/formal-power-series.hpp"

template <typename mint>
struct FormalPowerSeries : vector<mint> {
  using vector<mint>::vector;
  using FPS = FormalPowerSeries;

  FPS &operator+=(const FPS &r) {
    if (r.size() > this->size()) this->resize(r.size());
    for (int i = 0; i < (int)r.size(); i++) (*this)[i] += r[i];
    return *this;
  }

  FPS &operator+=(const mint &r) {
    if (this->empty()) this->resize(1);
    (*this)[0] += r;
    return *this;
  }

  FPS &operator-=(const FPS &r) {
    if (r.size() > this->size()) this->resize(r.size());
    for (int i = 0; i < (int)r.size(); i++) (*this)[i] -= r[i];
    return *this;
  }

  FPS &operator-=(const mint &r) {
    if (this->empty()) this->resize(1);
    (*this)[0] -= r;
    return *this;
  }

  FPS &operator*=(const mint &v) {
    for (int k = 0; k < (int)this->size(); k++) (*this)[k] *= v;
    return *this;
  }

  FPS &operator/=(const FPS &r) {
    if (this->size() < r.size()) {
      this->clear();
      return *this;
    }
    int n = this->size() - r.size() + 1;
    if ((int)r.size() <= 64) {
      FPS f(*this), g(r);
      g.shrink();
      mint coeff = g.back().inverse();
      for (auto &x : g) x *= coeff;
      int deg = (int)f.size() - (int)g.size() + 1;
      int gs = g.size();
      FPS quo(deg);
      for (int i = deg - 1; i >= 0; i--) {
        quo[i] = f[i + gs - 1];
        for (int j = 0; j < gs; j++) f[i + j] -= quo[i] * g[j];
      }
      *this = quo * coeff;
      this->resize(n, mint(0));
      return *this;
    }
    return *this = ((*this).rev().pre(n) * r.rev().inv(n)).pre(n).rev();
  }

  FPS &operator%=(const FPS &r) {
    *this -= *this / r * r;
    shrink();
    return *this;
  }

  FPS operator+(const FPS &r) const { return FPS(*this) += r; }
  FPS operator+(const mint &v) const { return FPS(*this) += v; }
  FPS operator-(const FPS &r) const { return FPS(*this) -= r; }
  FPS operator-(const mint &v) const { return FPS(*this) -= v; }
  FPS operator*(const FPS &r) const { return FPS(*this) *= r; }
  FPS operator*(const mint &v) const { return FPS(*this) *= v; }
  FPS operator/(const FPS &r) const { return FPS(*this) /= r; }
  FPS operator%(const FPS &r) const { return FPS(*this) %= r; }
  FPS operator-() const {
    FPS ret(this->size());
    for (int i = 0; i < (int)this->size(); i++) ret[i] = -(*this)[i];
    return ret;
  }

  void shrink() {
    while (this->size() && this->back() == mint(0)) this->pop_back();
  }

  FPS rev() const {
    FPS ret(*this);
    reverse(begin(ret), end(ret));
    return ret;
  }

  FPS dot(FPS r) const {
    FPS ret(min(this->size(), r.size()));
    for (int i = 0; i < (int)ret.size(); i++) ret[i] = (*this)[i] * r[i];
    return ret;
  }

  // 前 sz 項を取ってくる。sz に足りない項は 0 埋めする
  FPS pre(int sz) const {
    FPS ret(begin(*this), begin(*this) + min((int)this->size(), sz));
    if ((int)ret.size() < sz) ret.resize(sz);
    return ret;
  }

  FPS operator>>(int sz) const {
    if ((int)this->size() <= sz) return {};
    FPS ret(*this);
    ret.erase(ret.begin(), ret.begin() + sz);
    return ret;
  }

  FPS operator<<(int sz) const {
    FPS ret(*this);
    ret.insert(ret.begin(), sz, mint(0));
    return ret;
  }

  FPS diff() const {
    const int n = (int)this->size();
    FPS ret(max(0, n - 1));
    mint one(1), coeff(1);
    for (int i = 1; i < n; i++) {
      ret[i - 1] = (*this)[i] * coeff;
      coeff += one;
    }
    return ret;
  }

  FPS integral() const {
    const int n = (int)this->size();
    FPS ret(n + 1);
    ret[0] = mint(0);
    if (n > 0) ret[1] = mint(1);
    auto mod = mint::get_mod();
    for (int i = 2; i <= n; i++) ret[i] = (-ret[mod % i]) * (mod / i);
    for (int i = 0; i < n; i++) ret[i + 1] *= (*this)[i];
    return ret;
  }

  mint eval(mint x) const {
    mint r = 0, w = 1;
    for (auto &v : *this) r += w * v, w *= x;
    return r;
  }

  FPS log(int deg = -1) const {
    assert(!(*this).empty() && (*this)[0] == mint(1));
    if (deg == -1) deg = (int)this->size();
    return (this->diff() * this->inv(deg)).pre(deg - 1).integral();
  }

  FPS pow(int64_t k, int deg = -1) const {
    const int n = (int)this->size();
    if (deg == -1) deg = n;
    if (k == 0) {
      FPS ret(deg);
      if (deg) ret[0] = 1;
      return ret;
    }
    for (int i = 0; i < n; i++) {
      if ((*this)[i] != mint(0)) {
        mint rev = mint(1) / (*this)[i];
        FPS ret = (((*this * rev) >> i).log(deg) * k).exp(deg);
        ret *= (*this)[i].pow(k);
        ret = (ret << (i * k)).pre(deg);
        if ((int)ret.size() < deg) ret.resize(deg, mint(0));
        return ret;
      }
      if (__int128_t(i + 1) * k >= deg) return FPS(deg, mint(0));
    }
    return FPS(deg, mint(0));
  }

  static void *ntt_ptr;
  static void set_fft();
  FPS &operator*=(const FPS &r);
  void ntt();
  void intt();
  void ntt_doubling();
  static int ntt_pr();
  FPS inv(int deg = -1) const;
  FPS exp(int deg = -1) const;
};
template <typename mint>
void *FormalPowerSeries<mint>::ntt_ptr = nullptr;

/**
 * @brief 多項式/形式的冪級数ライブラリ
 * @docs docs/fps/formal-power-series.md
 */
#line 2 "modint/montgomery-modint.hpp"

template <uint32_t mod>
struct LazyMontgomeryModInt {
  using mint = LazyMontgomeryModInt;
  using i32 = int32_t;
  using u32 = uint32_t;
  using u64 = uint64_t;

  static constexpr u32 get_r() {
    u32 ret = mod;
    for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret;
    return ret;
  }

  static constexpr u32 r = get_r();
  static constexpr u32 n2 = -u64(mod) % mod;
  static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30");
  static_assert((mod & 1) == 1, "invalid, mod % 2 == 0");
  static_assert(r * mod == 1, "this code has bugs.");

  u32 a;

  constexpr LazyMontgomeryModInt() : a(0) {}
  constexpr LazyMontgomeryModInt(const int64_t &b)
      : a(reduce(u64(b % mod + mod) * n2)){};

  static constexpr u32 reduce(const u64 &b) {
    return (b + u64(u32(b) * u32(-r)) * mod) >> 32;
  }

  constexpr mint &operator+=(const mint &b) {
    if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod;
    return *this;
  }

  constexpr mint &operator-=(const mint &b) {
    if (i32(a -= b.a) < 0) a += 2 * mod;
    return *this;
  }

  constexpr mint &operator*=(const mint &b) {
    a = reduce(u64(a) * b.a);
    return *this;
  }

  constexpr mint &operator/=(const mint &b) {
    *this *= b.inverse();
    return *this;
  }

  constexpr mint operator+(const mint &b) const { return mint(*this) += b; }
  constexpr mint operator-(const mint &b) const { return mint(*this) -= b; }
  constexpr mint operator*(const mint &b) const { return mint(*this) *= b; }
  constexpr mint operator/(const mint &b) const { return mint(*this) /= b; }
  constexpr bool operator==(const mint &b) const {
    return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
  }
  constexpr bool operator!=(const mint &b) const {
    return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
  }
  constexpr mint operator-() const { return mint() - mint(*this); }
  constexpr mint operator+() const { return mint(*this); }

  constexpr mint pow(u64 n) const {
    mint ret(1), mul(*this);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }

  constexpr mint inverse() const {
    int x = get(), y = mod, u = 1, v = 0, t = 0, tmp = 0;
    while (y > 0) {
      t = x / y;
      x -= t * y, u -= t * v;
      tmp = x, x = y, y = tmp;
      tmp = u, u = v, v = tmp;
    }
    return mint{u};
  }

  friend ostream &operator<<(ostream &os, const mint &b) {
    return os << b.get();
  }

  friend istream &operator>>(istream &is, mint &b) {
    int64_t t;
    is >> t;
    b = LazyMontgomeryModInt<mod>(t);
    return (is);
  }

  constexpr u32 get() const {
    u32 ret = reduce(a);
    return ret >= mod ? ret - mod : ret;
  }

  static constexpr u32 get_mod() { return mod; }
};
#line 3 "modulo/strassen.hpp"
//

#line 2 "modint/simd-montgomery.hpp"

#line 4 "modint/simd-montgomery.hpp"

__attribute__((target("sse4.2"))) inline __m128i my128_mullo_epu32(
    const __m128i &a, const __m128i &b) {
  return _mm_mullo_epi32(a, b);
}

__attribute__((target("sse4.2"))) inline __m128i my128_mulhi_epu32(
    const __m128i &a, const __m128i &b) {
  __m128i a13 = _mm_shuffle_epi32(a, 0xF5);
  __m128i b13 = _mm_shuffle_epi32(b, 0xF5);
  __m128i prod02 = _mm_mul_epu32(a, b);
  __m128i prod13 = _mm_mul_epu32(a13, b13);
  __m128i prod = _mm_unpackhi_epi64(_mm_unpacklo_epi32(prod02, prod13),
                                    _mm_unpackhi_epi32(prod02, prod13));
  return prod;
}

__attribute__((target("sse4.2"))) inline __m128i montgomery_mul_128(
    const __m128i &a, const __m128i &b, const __m128i &r, const __m128i &m1) {
  return _mm_sub_epi32(
      _mm_add_epi32(my128_mulhi_epu32(a, b), m1),
      my128_mulhi_epu32(my128_mullo_epu32(my128_mullo_epu32(a, b), r), m1));
}

__attribute__((target("sse4.2"))) inline __m128i montgomery_add_128(
    const __m128i &a, const __m128i &b, const __m128i &m2, const __m128i &m0) {
  __m128i ret = _mm_sub_epi32(_mm_add_epi32(a, b), m2);
  return _mm_add_epi32(_mm_and_si128(_mm_cmpgt_epi32(m0, ret), m2), ret);
}

__attribute__((target("sse4.2"))) inline __m128i montgomery_sub_128(
    const __m128i &a, const __m128i &b, const __m128i &m2, const __m128i &m0) {
  __m128i ret = _mm_sub_epi32(a, b);
  return _mm_add_epi32(_mm_and_si128(_mm_cmpgt_epi32(m0, ret), m2), ret);
}

__attribute__((target("avx2"))) inline __m256i my256_mullo_epu32(
    const __m256i &a, const __m256i &b) {
  return _mm256_mullo_epi32(a, b);
}

__attribute__((target("avx2"))) inline __m256i my256_mulhi_epu32(
    const __m256i &a, const __m256i &b) {
  __m256i a13 = _mm256_shuffle_epi32(a, 0xF5);
  __m256i b13 = _mm256_shuffle_epi32(b, 0xF5);
  __m256i prod02 = _mm256_mul_epu32(a, b);
  __m256i prod13 = _mm256_mul_epu32(a13, b13);
  __m256i prod = _mm256_unpackhi_epi64(_mm256_unpacklo_epi32(prod02, prod13),
                                       _mm256_unpackhi_epi32(prod02, prod13));
  return prod;
}

__attribute__((target("avx2"))) inline __m256i montgomery_mul_256(
    const __m256i &a, const __m256i &b, const __m256i &r, const __m256i &m1) {
  return _mm256_sub_epi32(
      _mm256_add_epi32(my256_mulhi_epu32(a, b), m1),
      my256_mulhi_epu32(my256_mullo_epu32(my256_mullo_epu32(a, b), r), m1));
}

__attribute__((target("avx2"))) inline __m256i montgomery_add_256(
    const __m256i &a, const __m256i &b, const __m256i &m2, const __m256i &m0) {
  __m256i ret = _mm256_sub_epi32(_mm256_add_epi32(a, b), m2);
  return _mm256_add_epi32(_mm256_and_si256(_mm256_cmpgt_epi32(m0, ret), m2),
                          ret);
}

__attribute__((target("avx2"))) inline __m256i montgomery_sub_256(
    const __m256i &a, const __m256i &b, const __m256i &m2, const __m256i &m0) {
  __m256i ret = _mm256_sub_epi32(a, b);
  return _mm256_add_epi32(_mm256_and_si256(_mm256_cmpgt_epi32(m0, ret), m2),
                          ret);
}
#line 7 "modulo/strassen.hpp"

namespace FastMatProd {

using mint = LazyMontgomeryModInt<998244353>;
using u32 = uint32_t;
using i32 = int32_t;
using u64 = uint64_t;
using m256 = __m256i;

constexpr u32 SHIFT_ = 6;
u32 a[1 << (SHIFT_ * 2)] __attribute__((aligned(64)));
u32 b[1 << (SHIFT_ * 2)] __attribute__((aligned(64)));
u32 c[1 << (SHIFT_ * 2)] __attribute__((aligned(64)));

__attribute__((target("avx2"), optimize("O3", "unroll-loops"))) inline m256
normalize_m256(const m256& x, const m256& M1) {
  m256 CMP = _mm256_cmpgt_epi32(x, M1);
  return _mm256_sub_epi32(x, _mm256_and_si256(CMP, M1));
}

__attribute__((target("avx2"), optimize("O3", "unroll-loops"))) inline m256
simd_mulhi(const m256& _a, const m256& _b) {
  m256 a13 = _mm256_shuffle_epi32(_a, 0xF5);
  m256 b13 = _mm256_shuffle_epi32(_b, 0xF5);
  m256 prod02 = _mm256_mul_epu32(_a, _b);
  m256 prod13 = _mm256_mul_epu32(a13, b13);
  m256 unpalo = _mm256_unpacklo_epi32(prod02, prod13);
  m256 unpahi = _mm256_unpackhi_epi32(prod02, prod13);
  m256 prod = _mm256_unpackhi_epi64(unpalo, unpahi);
  return prod;
}

__attribute__((target("avx2"), optimize("O3", "unroll-loops"))) inline m256
simd_reduct(const m256& prod02, const m256& prod13, const m256& R,
            const m256& M1) {
  m256 unpalo = _mm256_unpacklo_epi32(prod02, prod13);
  m256 unpahi = _mm256_unpackhi_epi32(prod02, prod13);
  m256 prodlo = _mm256_unpacklo_epi64(unpalo, unpahi);
  m256 prodhi = _mm256_unpackhi_epi64(unpalo, unpahi);
  m256 hiplm1 = _mm256_add_epi32(prodhi, M1);
  m256 lomulr = _mm256_mullo_epi32(prodlo, R);
  m256 lomulrmulm1 = simd_mulhi(lomulr, M1);
  return _mm256_sub_epi32(hiplm1, lomulrmulm1);
}

__attribute__((target("avx2"), optimize("O3", "unroll-loops"))) inline m256
mul4(const m256& A00, const m256& A01, const m256& A02, const m256& A03,
     const m256& B00, const m256& B10, const m256& B20, const m256& B30,
     const m256& R, const m256& M1) {
  const m256 A00n = normalize_m256(A00, M1);
  const m256 A01n = normalize_m256(A01, M1);
  const m256 A02n = normalize_m256(A02, M1);
  const m256 A03n = normalize_m256(A03, M1);
  const m256 B00n = normalize_m256(B00, M1);
  const m256 B10n = normalize_m256(B10, M1);
  const m256 B20n = normalize_m256(B20, M1);
  const m256 B30n = normalize_m256(B30, M1);

  m256 a013 = _mm256_shuffle_epi32(A00n, 0xF5);
  m256 b013 = _mm256_shuffle_epi32(B00n, 0xF5);
  m256 a113 = _mm256_shuffle_epi32(A01n, 0xF5);
  m256 b113 = _mm256_shuffle_epi32(B10n, 0xF5);
  m256 a213 = _mm256_shuffle_epi32(A02n, 0xF5);
  m256 b213 = _mm256_shuffle_epi32(B20n, 0xF5);
  m256 a313 = _mm256_shuffle_epi32(A03n, 0xF5);
  m256 b313 = _mm256_shuffle_epi32(B30n, 0xF5);
  m256 p0_02 = _mm256_mul_epu32(A00n, B00n);
  m256 p0_13 = _mm256_mul_epu32(a013, b013);
  m256 p1_02 = _mm256_mul_epu32(A01n, B10n);
  m256 p1_13 = _mm256_mul_epu32(a113, b113);
  m256 p2_02 = _mm256_mul_epu32(A02n, B20n);
  m256 p2_13 = _mm256_mul_epu32(a213, b213);
  m256 p3_02 = _mm256_mul_epu32(A03n, B30n);
  m256 p3_13 = _mm256_mul_epu32(a313, b313);
  m256 p02_02 = _mm256_add_epi64(p0_02, p2_02);
  m256 p13_02 = _mm256_add_epi64(p1_02, p3_02);
  m256 prod02 = _mm256_add_epi64(p02_02, p13_02);
  m256 p02_13 = _mm256_add_epi64(p0_13, p2_13);
  m256 p13_13 = _mm256_add_epi64(p1_13, p3_13);
  m256 prod13 = _mm256_add_epi64(p02_13, p13_13);
  return simd_reduct(prod02, prod13, R, M1);
}

__attribute__((target("avx2"), optimize("O3", "unroll-loops"))) void
inner_simd_mul(u32 n, u32 m, u32 p) {
  memset(c, 0, sizeof(c));
  const m256 R = _mm256_set1_epi32(mint::r);
  const m256 M0 = _mm256_set1_epi32(0);
  const m256 M1 = _mm256_set1_epi32(mint::get_mod());
  const m256 M2 = _mm256_set1_epi32(mint::get_mod() << 1);

  u32 k0 = 0;
  for (; i32(k0) < i32(p) - 3; k0 += 4) {
    const u32 k1 = k0 + 1;
    const u32 k2 = k0 + 2;
    const u32 k3 = k0 + 3;
    u32 j0 = 0;
    for (; i32(j0) < i32(m) - 7; j0 += 8) {
      const m256 B00 = _mm256_load_si256((m256*)(b + (k0 << SHIFT_) + j0));
      const m256 B10 = _mm256_load_si256((m256*)(b + (k1 << SHIFT_) + j0));
      const m256 B20 = _mm256_load_si256((m256*)(b + (k2 << SHIFT_) + j0));
      const m256 B30 = _mm256_load_si256((m256*)(b + (k3 << SHIFT_) + j0));
      for (u32 i0 = 0; i0 < n; ++i0) {
        const m256 A00 = _mm256_set1_epi32(a[(i0 << SHIFT_) | k0]);
        const m256 A01 = _mm256_set1_epi32(a[(i0 << SHIFT_) | k1]);
        const m256 A02 = _mm256_set1_epi32(a[(i0 << SHIFT_) | k2]);
        const m256 A03 = _mm256_set1_epi32(a[(i0 << SHIFT_) | k3]);
        const u32* pc00 = c + (i0 << SHIFT_) + j0;
        const m256 C00 = _mm256_load_si256((m256*)pc00);
        const m256 C00_ad = mul4(A00, A01, A02, A03, B00, B10, B20, B30, R, M1);
        const m256 C00sum = montgomery_add_256(C00, C00_ad, M2, M0);
        _mm256_store_si256((m256*)pc00, C00sum);
      }
    }
    for (; j0 < m; j0++) {
      for (u32 i0 = 0; i0 < n; ++i0) {
        u32 ab0 =
            mint::reduce(u64(a[(i0 << SHIFT_) | k0]) * b[(k0 << SHIFT_) | j0]);
        u32 ab1 =
            mint::reduce(u64(a[(i0 << SHIFT_) | k1]) * b[(k1 << SHIFT_) | j0]);
        u32 ab2 =
            mint::reduce(u64(a[(i0 << SHIFT_) | k2]) * b[(k2 << SHIFT_) | j0]);
        u32 ab3 =
            mint::reduce(u64(a[(i0 << SHIFT_) | k3]) * b[(k3 << SHIFT_) | j0]);
        if ((ab0 += ab1) >= 2 * mint::get_mod()) ab0 -= 2 * mint::get_mod();
        if ((ab2 += ab3) >= 2 * mint::get_mod()) ab2 -= 2 * mint::get_mod();
        if ((ab0 += ab2) >= 2 * mint::get_mod()) ab0 -= 2 * mint::get_mod();
        if ((c[(i0 << SHIFT_) | j0] += ab0) >= 2 * mint::get_mod())
          c[(i0 << SHIFT_) | j0] -= 2 * mint::get_mod();
      }
    }
  }

  for (; k0 < p; k0++) {
    u32 j0 = 0;
    for (; i32(j0) < i32(m) - 7; j0 += 8) {
      const m256 B00 = _mm256_load_si256((m256*)(b + (k0 << SHIFT_) + j0));
      for (u32 i0 = 0; i0 < n; ++i0) {
        const m256 A00 = _mm256_set1_epi32(a[(i0 << SHIFT_) | k0]);
        const m256 A00B00 = montgomery_mul_256(A00, B00, R, M1);
        const u32* pc00 = c + (i0 << SHIFT_) + j0;
        const m256 C00 = _mm256_load_si256((m256*)pc00);
        const m256 C00_ad = montgomery_add_256(C00, A00B00, M2, M0);
        _mm256_store_si256((m256*)pc00, C00_ad);
      }
    }
    for (; j0 < m; j0++) {
      for (u32 i0 = 0; i0 < n; ++i0) {
        u32 ab0 =
            mint::reduce(u64(a[(i0 << SHIFT_) | k0]) * b[(k0 << SHIFT_) | j0]);
        if ((c[(i0 << SHIFT_) | j0] += ab0) >= 2 * mint::get_mod())
          c[(i0 << SHIFT_) | j0] -= 2 * mint::get_mod();
      }
    }
  }
}

struct Mat {
  int H, W, HM, WM;
  mint* a;

  Mat(int H_, int W_, mint* a_) : H(H_), W(W_), a(a_) {
    HM = (H >> 1) + (H & 1);
    WM = (W >> 1) + (W & 1);
  }

  __attribute__((target("avx2"), optimize("O3", "unroll-loops"))) void
  range_add(mint* _b, int as, int ae, int bs) const {
    const m256 M0 = _mm256_set1_epi32(0);
    const m256 M2 = _mm256_set1_epi32(mint::get_mod() * 2);
    for (; as < ae - 31; as += 32, bs += 32) {
      int a0 = as;
      int a1 = as + 8;
      int a2 = as + 16;
      int a3 = as + 24;
      int b0 = bs;
      int b1 = bs + 8;
      int b2 = bs + 16;
      int b3 = bs + 24;
      const m256 A0 = _mm256_loadu_si256((m256*)(a + a0));
      const m256 A1 = _mm256_loadu_si256((m256*)(a + a1));
      const m256 A2 = _mm256_loadu_si256((m256*)(a + a2));
      const m256 A3 = _mm256_loadu_si256((m256*)(a + a3));
      const m256 B0 = _mm256_loadu_si256((m256*)(_b + b0));
      const m256 B1 = _mm256_loadu_si256((m256*)(_b + b1));
      const m256 B2 = _mm256_loadu_si256((m256*)(_b + b2));
      const m256 B3 = _mm256_loadu_si256((m256*)(_b + b3));
      const m256 BA0 = montgomery_add_256(B0, A0, M2, M0);
      const m256 BA1 = montgomery_add_256(B1, A1, M2, M0);
      const m256 BA2 = montgomery_add_256(B2, A2, M2, M0);
      const m256 BA3 = montgomery_add_256(B3, A3, M2, M0);
      _mm256_storeu_si256((m256*)(_b + b0), BA0);
      _mm256_storeu_si256((m256*)(_b + b1), BA1);
      _mm256_storeu_si256((m256*)(_b + b2), BA2);
      _mm256_storeu_si256((m256*)(_b + b3), BA3);
    }
    for (; as < ae; ++as, ++bs) _b[bs] += a[as];
  }

  __attribute__((target("avx2"), optimize("O3", "unroll-loops"))) void
  range_sub(mint* _b, int as, int ae, int bs) const {
    const m256 M0 = _mm256_set1_epi32(0);
    const m256 M2 = _mm256_set1_epi32(mint::get_mod() * 2);
    for (; as < ae - 31; as += 32, bs += 32) {
      int a0 = as;
      int a1 = as + 8;
      int a2 = as + 16;
      int a3 = as + 24;
      int b0 = bs;
      int b1 = bs + 8;
      int b2 = bs + 16;
      int b3 = bs + 24;
      const m256 A0 = _mm256_loadu_si256((m256*)(a + a0));
      const m256 A1 = _mm256_loadu_si256((m256*)(a + a1));
      const m256 A2 = _mm256_loadu_si256((m256*)(a + a2));
      const m256 A3 = _mm256_loadu_si256((m256*)(a + a3));
      const m256 B0 = _mm256_loadu_si256((m256*)(_b + b0));
      const m256 B1 = _mm256_loadu_si256((m256*)(_b + b1));
      const m256 B2 = _mm256_loadu_si256((m256*)(_b + b2));
      const m256 B3 = _mm256_loadu_si256((m256*)(_b + b3));
      const m256 BA0 = montgomery_sub_256(B0, A0, M2, M0);
      const m256 BA1 = montgomery_sub_256(B1, A1, M2, M0);
      const m256 BA2 = montgomery_sub_256(B2, A2, M2, M0);
      const m256 BA3 = montgomery_sub_256(B3, A3, M2, M0);
      _mm256_storeu_si256((m256*)(_b + b0), BA0);
      _mm256_storeu_si256((m256*)(_b + b1), BA1);
      _mm256_storeu_si256((m256*)(_b + b2), BA2);
      _mm256_storeu_si256((m256*)(_b + b3), BA3);
    }
    for (; as < ae; ++as, ++bs) _b[bs] -= a[as];
  }

  __attribute__((target("avx2"), optimize("O3", "unroll-loops"))) void
  op_range_add(mint* _b, int as, int ae, int bs) const {
    const m256 M0 = _mm256_set1_epi32(0);
    const m256 M2 = _mm256_set1_epi32(mint::get_mod() * 2);
    for (; as < ae - 31; as += 32, bs += 32) {
      int a0 = as;
      int a1 = as + 8;
      int a2 = as + 16;
      int a3 = as + 24;
      int b0 = bs;
      int b1 = bs + 8;
      int b2 = bs + 16;
      int b3 = bs + 24;
      const m256 A0 = _mm256_loadu_si256((m256*)(a + a0));
      const m256 A1 = _mm256_loadu_si256((m256*)(a + a1));
      const m256 A2 = _mm256_loadu_si256((m256*)(a + a2));
      const m256 A3 = _mm256_loadu_si256((m256*)(a + a3));
      const m256 B0 = _mm256_loadu_si256((m256*)(_b + b0));
      const m256 B1 = _mm256_loadu_si256((m256*)(_b + b1));
      const m256 B2 = _mm256_loadu_si256((m256*)(_b + b2));
      const m256 B3 = _mm256_loadu_si256((m256*)(_b + b3));
      const m256 BA0 = montgomery_add_256(B0, A0, M2, M0);
      const m256 BA1 = montgomery_add_256(B1, A1, M2, M0);
      const m256 BA2 = montgomery_add_256(B2, A2, M2, M0);
      const m256 BA3 = montgomery_add_256(B3, A3, M2, M0);
      _mm256_storeu_si256((m256*)(a + a0), BA0);
      _mm256_storeu_si256((m256*)(a + a1), BA1);
      _mm256_storeu_si256((m256*)(a + a2), BA2);
      _mm256_storeu_si256((m256*)(a + a3), BA3);
    }
    for (; as < ae; ++as, ++bs) a[as] += _b[bs];
  }

  __attribute__((target("avx2"), optimize("O3", "unroll-loops"))) void
  op_range_sub(mint* _b, int as, int ae, int bs) const {
    const m256 M0 = _mm256_set1_epi32(0);
    const m256 M2 = _mm256_set1_epi32(mint::get_mod() * 2);
    for (; as < ae - 31; as += 32, bs += 32) {
      int a0 = as;
      int a1 = as + 8;
      int a2 = as + 16;
      int a3 = as + 24;
      int b0 = bs;
      int b1 = bs + 8;
      int b2 = bs + 16;
      int b3 = bs + 24;
      const m256 A0 = _mm256_loadu_si256((m256*)(a + a0));
      const m256 A1 = _mm256_loadu_si256((m256*)(a + a1));
      const m256 A2 = _mm256_loadu_si256((m256*)(a + a2));
      const m256 A3 = _mm256_loadu_si256((m256*)(a + a3));
      const m256 B0 = _mm256_loadu_si256((m256*)(_b + b0));
      const m256 B1 = _mm256_loadu_si256((m256*)(_b + b1));
      const m256 B2 = _mm256_loadu_si256((m256*)(_b + b2));
      const m256 B3 = _mm256_loadu_si256((m256*)(_b + b3));
      const m256 BA0 = montgomery_sub_256(A0, B0, M2, M0);
      const m256 BA1 = montgomery_sub_256(A1, B1, M2, M0);
      const m256 BA2 = montgomery_sub_256(A2, B2, M2, M0);
      const m256 BA3 = montgomery_sub_256(A3, B3, M2, M0);
      _mm256_storeu_si256((m256*)(a + a0), BA0);
      _mm256_storeu_si256((m256*)(a + a1), BA1);
      _mm256_storeu_si256((m256*)(a + a2), BA2);
      _mm256_storeu_si256((m256*)(a + a3), BA3);
    }
    for (; as < ae; ++as, ++bs) a[as] -= _b[bs];
  }

  __attribute__((target("avx2"), optimize("O3", "unroll-loops"))) inline void
  A11(mint* _b) const {
    for (int i = 0; i < HM; i++)
      memcpy(_b + i * WM, a + i * W, WM * sizeof(int));
  }

  __attribute__((target("avx2"), optimize("O3", "unroll-loops"))) inline void
  A12(mint* _b) const {
    for (int i = 0; i < HM; i++)
      memcpy(_b + i * WM, a + i * W + WM, (W - WM) * sizeof(int));
  }

  __attribute__((target("avx2"), optimize("O3", "unroll-loops"))) inline void
  A21(mint* _b) const {
    for (int i = 0; i < H - HM; i++)
      memcpy(_b + i * WM, a + (i + HM) * W, WM * sizeof(int));
  }

  __attribute__((target("avx2"), optimize("O3", "unroll-loops"))) inline void
  A22(mint* _b) const {
    for (int i = 0; i < H - HM; i++)
      memcpy(_b + i * WM, a + (i + HM) * W + WM, (W - WM) * sizeof(int));
  }

  __attribute__((target("avx2"), optimize("O3", "unroll-loops"))) inline void
  subA11(mint* _b) const {
    for (int i = 0; i < HM; i++) {
      int as = i * W;
      int ae = i * W + WM;
      int bs = i * WM;
      range_sub(_b, as, ae, bs);
    }
  }

  __attribute__((target("avx2"), optimize("O3", "unroll-loops"))) inline void
  addA12(mint* _b) const {
    for (int i = 0; i < HM; i++) {
      int as = i * W + WM;
      int ae = i * W + W;
      int bs = i * WM;
      range_add(_b, as, ae, bs);
    }
  }

  __attribute__((target("avx2"), optimize("O3", "unroll-loops"))) inline void
  addA22(mint* _b) const {
    for (int i = 0; i < H - HM; i++) {
      int as = (i + HM) * W + WM;
      int ae = as + W - WM;
      int bs = i * WM;
      range_add(_b, as, ae, bs);
    }
  }

  __attribute__((target("avx2"), optimize("O3", "unroll-loops"))) inline void
  subA22(mint* _b) const {
    for (int i = 0; i < H - HM; i++) {
      int as = (i + HM) * W + WM;
      int ae = as + W - WM;
      int bs = i * WM;
      range_sub(_b, as, ae, bs);
    }
  }

  __attribute__((target("avx2"), optimize("O3", "unroll-loops"))) inline void
  updA11(mint* _b) const {
    for (int i = 0; i < HM; i++)
      memcpy(a + i * W, _b + i * WM, WM * sizeof(int));
  }

  __attribute__((target("avx2"), optimize("O3", "unroll-loops"))) inline void
  updA12(mint* _b) const {
    for (int i = 0; i < HM; i++)
      memcpy(a + i * W + WM, _b + i * WM, (W - WM) * sizeof(int));
  }

  __attribute__((target("avx2"), optimize("O3", "unroll-loops"))) inline void
  updA21(mint* _b) const {
    for (int i = 0; i < H - HM; i++)
      memcpy(a + (i + HM) * W, _b + i * WM, WM * sizeof(int));
  }

  __attribute__((target("avx2"), optimize("O3", "unroll-loops"))) inline void
  updA22(mint* _b) const {
    for (int i = 0; i < H - HM; i++)
      memcpy(a + (i + HM) * W + WM, _b + i * WM, (W - WM) * sizeof(int));
  }

  __attribute__((target("avx2"), optimize("O3", "unroll-loops"))) inline void
  opaddA11(mint* _b) const {
    for (int i = 0; i < HM; i++) {
      int as = i * W;
      int ae = i * W + WM;
      int bs = i * WM;
      op_range_add(_b, as, ae, bs);
    }
  }

  __attribute__((target("avx2"), optimize("O3", "unroll-loops"))) inline void
  opaddA12(mint* _b) const {
    for (int i = 0; i < HM; i++) {
      int as = i * W + WM;
      int ae = i * W + W;
      int bs = i * WM;
      op_range_add(_b, as, ae, bs);
    }
  }

  __attribute__((target("avx2"), optimize("O3", "unroll-loops"))) inline void
  opaddA21(mint* _b) const {
    for (int i = 0; i < H - HM; i++) {
      int as = (i + HM) * W;
      int ae = (i + HM) * W + WM;
      int bs = i * WM;
      op_range_add(_b, as, ae, bs);
    }
  }

  __attribute__((target("avx2"), optimize("O3", "unroll-loops"))) inline void
  opaddA22(mint* _b) const {
    for (int i = 0; i < H - HM; i++) {
      int as = (i + HM) * W + WM;
      int ae = (i + HM) * W + W;
      int bs = i * WM;
      op_range_add(_b, as, ae, bs);
    }
  }

  __attribute__((target("avx2"), optimize("O3", "unroll-loops"))) inline void
  opsubA11(mint* _b) const {
    for (int i = 0; i < HM; i++) {
      int as = i * W;
      int ae = i * W + WM;
      int bs = i * WM;
      op_range_sub(_b, as, ae, bs);
    }
  }

  __attribute__((target("avx2"), optimize("O3", "unroll-loops"))) inline void
  opsubA22(mint* _b) const {
    for (int i = 0; i < H - HM; i++) {
      int as = (i + HM) * W + WM;
      int ae = (i + HM) * W + W;
      int bs = i * WM;
      op_range_sub(_b, as, ae, bs);
    }
  }

  void dump() const {
    cerr << "[ " << endl << " ";
    for (int i = 0; i < H; i++)
      for (int j = 0; j < W; j++)
        cerr << a[i * W + j] << (j == W - 1 ? ",\n " : " ");
    cerr << "] " << endl;
  }
};

#ifndef BUFFER_SIZE
#define BUFFER_SIZE (1 << 23)
#endif
mint A[BUFFER_SIZE] __attribute__((aligned(64)));
mint B[BUFFER_SIZE] __attribute__((aligned(64)));
mint C[BUFFER_SIZE] __attribute__((aligned(64)));

__attribute__((target("avx2"), optimize("O3", "unroll-loops"))) void
inner_fast_mul(const Mat* s, const Mat* t, const Mat* u) {
  int n = s->H, m = t->W, p = s->W;
  for (int i = 0; i < n; i++)
    memcpy((mint*)(a + (i << SHIFT_)), s->a + i * p, p * sizeof(int));
  for (int i = 0; i < p; i++)
    memcpy((mint*)(b + (i << SHIFT_)), t->a + i * m, m * sizeof(int));
  inner_simd_mul(n, m, p);
  for (int i = 0; i < n; i++)
    memcpy(u->a + i * m, (mint*)(c + (i << SHIFT_)), m * sizeof(int));
}

__attribute__((target("avx2"), optimize("O3", "unroll-loops"))) void
inner_block_dec_mul(const Mat* s, const Mat* t, const Mat* u) {
  int n = s->H, m = t->W, p = s->W;
  memset((int*)(u->a), 0, n * m * sizeof(int));
  for (int is = 0; is < n; is += (1 << SHIFT_))
    for (int ks = 0; ks < p; ks += (1 << SHIFT_))
      for (int js = 0; js < m; js += (1 << SHIFT_)) {
        int ie = min(is + (1 << SHIFT_), n);
        int je = min(js + (1 << SHIFT_), m);
        int ke = min(ks + (1 << SHIFT_), p);
        for (int l = is; l < ie; l++)
          memcpy((mint*)(a + ((l - is) << SHIFT_)), s->a + l * p + ks,
                 (ke - ks) * sizeof(int));
        for (int l = ks; l < ke; l++)
          memcpy((mint*)(b + ((l - ks) << SHIFT_)), t->a + l * m + js,
                 (je - js) * sizeof(int));
        inner_simd_mul(ie - is, je - js, ke - ks);
        for (int l = is; l < ie; l++) {
          for (int ll = js; ll < je; ll++) {
            u->a[l * m + ll] +=
                *reinterpret_cast<mint*>(c + ((l - is) << SHIFT_) + (ll - js));
          }
        }
      }
}

__attribute__((target("avx2"), optimize("O3", "unroll-loops"))) void
inner_strassen(const Mat* _a, const Mat* _b, const Mat* _c) {
  int n = _a->H, m = _b->W, p = _a->W;
  if (max({n, m, p}) <= (1 << SHIFT_)) {
    inner_fast_mul(_a, _b, _c);
    return;
  }
  if (min({n, m, p}) <= (1 << (SHIFT_ - 2))) {
    inner_block_dec_mul(_a, _b, _c);
    return;
  }
  int nm = n / 2 + (n & 1);
  int mm = m / 2 + (m & 1);
  int pm = p / 2 + (p & 1);

  Mat s(nm, pm, _a->a + n * p);
  Mat t(pm, mm, _b->a + p * m);
  Mat u(nm, mm, _c->a + n * m);

  // P1 = (A11 + A22) * (B11 + B22)
  _a->A11(s.a);
  _a->addA22(s.a);
  _b->A11(t.a);
  _b->addA22(t.a);
  inner_strassen(&s, &t, &u);
  _c->updA11(u.a);
  _c->updA22(u.a);

  // P2 = (A21 + A22) * B11
  memset((int*)s.a, 0, nm * pm * sizeof(int));
  _a->A21(s.a);
  _a->addA22(s.a);
  _b->A11(t.a);
  inner_strassen(&s, &t, &u);
  _c->updA21(u.a);
  _c->opsubA22(u.a);

  // P3 = A11 (B12 - B22)
  _a->A11(s.a);
  memset((int*)t.a, 0, pm * mm * sizeof(int));
  _b->A12(t.a);
  _b->subA22(t.a);
  inner_strassen(&s, &t, &u);
  _c->updA12(u.a);
  _c->opaddA22(u.a);

  // P4 = A22 (B21 - B11)
  memset((int*)s.a, 0, nm * pm * sizeof(int));
  _a->A22(s.a);
  memset((int*)t.a + (pm - 1) * mm, 0, mm * sizeof(int));
  _b->A21(t.a);
  _b->subA11(t.a);
  inner_strassen(&s, &t, &u);
  _c->opaddA11(u.a);
  _c->opaddA21(u.a);

  // P5 = (A11 + A12) B22
  memset((int*)t.a, 0, pm * mm * sizeof(int));
  _a->A11(s.a);
  _a->addA12(s.a);
  _b->A22(t.a);
  inner_strassen(&s, &t, &u);
  _c->opsubA11(u.a);
  _c->opaddA12(u.a);

  // P6 = (A21 - A11) (B11 + B12)
  memset((int*)s.a + (nm - 1) * pm, 0, pm * sizeof(int));
  _a->A21(s.a);
  _a->subA11(s.a);
  _b->A11(t.a);
  _b->addA12(t.a);
  inner_strassen(&s, &t, &u);
  _c->opaddA22(u.a);

  // P7 = (A12 - A22) (B21 + B22)
  memset((int*)s.a, 0, nm * pm * sizeof(int));
  _a->A12(s.a);
  _a->subA22(s.a);
  memset((int*)t.a + (pm - 1) * mm, 0, mm * sizeof(int));
  _b->A21(t.a);
  _b->addA22(t.a);
  inner_strassen(&s, &t, &u);
  _c->opaddA11(u.a);
}

template <typename fps>
__attribute__((target("avx2"), optimize("O3", "unroll-loops"))) vector<fps>
block_dec(const vector<fps>& s, const vector<fps>& t) {
  int n = s.size(), p = s[0].size(), m = t[0].size();
  assert(int(n * p * 1.4) <= BUFFER_SIZE);
  assert(int(p * m * 1.4) <= BUFFER_SIZE);
  assert(int(n * m * 1.4) <= BUFFER_SIZE);
  memset(A, 0, int(n * p * 1.4) * sizeof(int));
  memset(B, 0, int(p * m * 1.4) * sizeof(int));
  memset(C, 0, int(m * n * 1.4) * sizeof(int));

  for (int i = 0; i < n; i++) memcpy(A + i * p, s[i].data(), p * sizeof(int));
  for (int i = 0; i < p; i++) memcpy(B + i * m, t[i].data(), m * sizeof(int));

  Mat S(n, p, A), T(p, m, B), U(n, m, C);
  inner_block_dec_mul(&S, &T, &U);
  vector<fps> u(n, fps(m));
  for (int i = 0; i < n; i++) memcpy(u[i].data(), C + i * m, m * sizeof(int));
  return std::move(u);
}

template <typename fps>
__attribute__((target("avx2"), optimize("O3", "unroll-loops"))) vector<fps>
strassen(const vector<fps>& s, const vector<fps>& t) {
  int n = s.size(), p = s[0].size(), m = t[0].size();
  assert(int(n * p * 1.4) <= BUFFER_SIZE);
  assert(int(p * m * 1.4) <= BUFFER_SIZE);
  assert(int(n * m * 1.4) <= BUFFER_SIZE);
  memset(A, 0, int(n * p * 1.4) * sizeof(int));
  memset(B, 0, int(p * m * 1.4) * sizeof(int));
  memset(C, 0, int(m * n * 1.4) * sizeof(int));

  for (int i = 0; i < n; i++) memcpy(A + i * p, s[i].data(), p * sizeof(int));
  for (int i = 0; i < p; i++) memcpy(B + i * m, t[i].data(), m * sizeof(int));

  Mat S(n, p, A), T(p, m, B), U(n, m, C);
  inner_strassen(&S, &T, &U);
  vector<fps> u(n, fps(m));
  for (int i = 0; i < n; i++) memcpy(u[i].data(), C + i * m, m * sizeof(int));
  return std::move(u);
}

#ifdef BUFFER_SIZE
#undef BUFFER_SIZE
#endif
}  // namespace FastMatProd
#line 5 "fps/fps-composition-fast-old.hpp"

using mint = LazyMontgomeryModInt<998244353>;
using fps = FormalPowerSeries<mint>;

// Q(P(x))
__attribute__((target("avx2"), optimize("O3", "unroll-loops"))) fps Composition(
    fps P, fps Q, int deg = -1) {
  int N = (deg == -1) ? min(P.size(), Q.size()) : deg;
  if (N == 0) return fps{};
  P.shrink();
  if (P.size() == 0) {
    fps R(N, mint(0));
    R[0] = Q.empty() ? mint(0) : Q[0];
    return R;
  }
  if (N == 1) return fps{Q.eval(P[0])};
  P.resize(N);

  int K = max<int>(ceil(sqrt(N)), 2);
  assert(N <= K * K);

  vector<fps> PS(K + 1);
  {
    // step 1
    PS[0].resize(N, mint());
    PS[0][0] = 1;
    PS[1] = P;
    fps::set_fft();
    if (fps::ntt_ptr == nullptr) {
      for (int i = 2; i <= K; i++) PS[i] = (PS[i - 1] * P).pre(N);
    } else {
      int len = 1 << (32 - __builtin_clz(2 * N - 2));
      fps Pomega = P;
      Pomega.resize(len);
      Pomega.ntt();
      for (int i = 2; i <= K; i++) {
        PS[i].resize(len);
        for (int j = 0; j < N; j++) PS[i][j] = PS[i - 1][j];
        PS[i].ntt();
        for (int j = 0; j < len; j++) PS[i][j] *= Pomega[j];
        PS[i].intt();
        PS[i].resize(N);
        PS[i].shrink_to_fit();
      }
    }
  }

  vector<fps> TS(K);
  {
    // step 2
    TS[0].resize(N, mint());
    TS[0][0] = 1;
    TS[1] = PS[K];
    if (fps::ntt_ptr == nullptr) {
      for (int i = 2; i < K; i++) TS[i] = (TS[i - 1] * TS[1]).pre(N);
    } else {
      int len = 1 << (32 - __builtin_clz(2 * N - 2));
      fps Tomega = TS[1];
      Tomega.resize(len);
      Tomega.ntt();
      for (int i = 2; i < K; i++) {
        TS[i].resize(len);
        for (int j = 0; j < N; j++) TS[i][j] = TS[i - 1][j];
        TS[i].ntt();
        for (int j = 0; j < len; j++) TS[i][j] *= Tomega[j];
        TS[i].intt();
        TS[i].resize(N);
        TS[i].shrink_to_fit();
      }
    }
  }

  // step 3
  vector<fps> QP;
  {
    PS.pop_back();
    vector<fps> QS(K, fps(K, mint()));
    for (int i = 0; i < K; i++)
      for (int j = 0; j < K; j++) {
        QS[i][j] = (i * K + j) < (int)Q.size() ? Q[i * K + j] : mint();
      }
    QP = FastMatProd::strassen(QS, PS);
  }

  fps ans(N, mint());
  {
    // step 4,5
    for (int i = 0; i < K; i++) ans += (QP[i] * TS[i]).pre(N);
  }
  return ans;
}

/**
 * @brief 関数の合成( $\mathrm{O}(N^2)$ )
 */
#line 2 "fps/ntt-friendly-fps.hpp"

#line 2 "ntt/ntt.hpp"

template <typename mint>
struct NTT {
  static constexpr uint32_t get_pr() {
    uint32_t _mod = mint::get_mod();
    using u64 = uint64_t;
    u64 ds[32] = {};
    int idx = 0;
    u64 m = _mod - 1;
    for (u64 i = 2; i * i <= m; ++i) {
      if (m % i == 0) {
        ds[idx++] = i;
        while (m % i == 0) m /= i;
      }
    }
    if (m != 1) ds[idx++] = m;

    uint32_t _pr = 2;
    while (1) {
      int flg = 1;
      for (int i = 0; i < idx; ++i) {
        u64 a = _pr, b = (_mod - 1) / ds[i], r = 1;
        while (b) {
          if (b & 1) r = r * a % _mod;
          a = a * a % _mod;
          b >>= 1;
        }
        if (r == 1) {
          flg = 0;
          break;
        }
      }
      if (flg == 1) break;
      ++_pr;
    }
    return _pr;
  };

  static constexpr uint32_t mod = mint::get_mod();
  static constexpr uint32_t pr = get_pr();
  static constexpr int level = __builtin_ctzll(mod - 1);
  mint dw[level], dy[level];

  void setwy(int k) {
    mint w[level], y[level];
    w[k - 1] = mint(pr).pow((mod - 1) / (1 << k));
    y[k - 1] = w[k - 1].inverse();
    for (int i = k - 2; i > 0; --i)
      w[i] = w[i + 1] * w[i + 1], y[i] = y[i + 1] * y[i + 1];
    dw[1] = w[1], dy[1] = y[1], dw[2] = w[2], dy[2] = y[2];
    for (int i = 3; i < k; ++i) {
      dw[i] = dw[i - 1] * y[i - 2] * w[i];
      dy[i] = dy[i - 1] * w[i - 2] * y[i];
    }
  }

  NTT() { setwy(level); }

  void fft4(vector<mint> &a, int k) {
    if ((int)a.size() <= 1) return;
    if (k == 1) {
      mint a1 = a[1];
      a[1] = a[0] - a[1];
      a[0] = a[0] + a1;
      return;
    }
    if (k & 1) {
      int v = 1 << (k - 1);
      for (int j = 0; j < v; ++j) {
        mint ajv = a[j + v];
        a[j + v] = a[j] - ajv;
        a[j] += ajv;
      }
    }
    int u = 1 << (2 + (k & 1));
    int v = 1 << (k - 2 - (k & 1));
    mint one = mint(1);
    mint imag = dw[1];
    while (v) {
      // jh = 0
      {
        int j0 = 0;
        int j1 = v;
        int j2 = j1 + v;
        int j3 = j2 + v;
        for (; j0 < v; ++j0, ++j1, ++j2, ++j3) {
          mint t0 = a[j0], t1 = a[j1], t2 = a[j2], t3 = a[j3];
          mint t0p2 = t0 + t2, t1p3 = t1 + t3;
          mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag;
          a[j0] = t0p2 + t1p3, a[j1] = t0p2 - t1p3;
          a[j2] = t0m2 + t1m3, a[j3] = t0m2 - t1m3;
        }
      }
      // jh >= 1
      mint ww = one, xx = one * dw[2], wx = one;
      for (int jh = 4; jh < u;) {
        ww = xx * xx, wx = ww * xx;
        int j0 = jh * v;
        int je = j0 + v;
        int j2 = je + v;
        for (; j0 < je; ++j0, ++j2) {
          mint t0 = a[j0], t1 = a[j0 + v] * xx, t2 = a[j2] * ww,
               t3 = a[j2 + v] * wx;
          mint t0p2 = t0 + t2, t1p3 = t1 + t3;
          mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag;
          a[j0] = t0p2 + t1p3, a[j0 + v] = t0p2 - t1p3;
          a[j2] = t0m2 + t1m3, a[j2 + v] = t0m2 - t1m3;
        }
        xx *= dw[__builtin_ctzll((jh += 4))];
      }
      u <<= 2;
      v >>= 2;
    }
  }

  void ifft4(vector<mint> &a, int k) {
    if ((int)a.size() <= 1) return;
    if (k == 1) {
      mint a1 = a[1];
      a[1] = a[0] - a[1];
      a[0] = a[0] + a1;
      return;
    }
    int u = 1 << (k - 2);
    int v = 1;
    mint one = mint(1);
    mint imag = dy[1];
    while (u) {
      // jh = 0
      {
        int j0 = 0;
        int j1 = v;
        int j2 = v + v;
        int j3 = j2 + v;
        for (; j0 < v; ++j0, ++j1, ++j2, ++j3) {
          mint t0 = a[j0], t1 = a[j1], t2 = a[j2], t3 = a[j3];
          mint t0p1 = t0 + t1, t2p3 = t2 + t3;
          mint t0m1 = t0 - t1, t2m3 = (t2 - t3) * imag;
          a[j0] = t0p1 + t2p3, a[j2] = t0p1 - t2p3;
          a[j1] = t0m1 + t2m3, a[j3] = t0m1 - t2m3;
        }
      }
      // jh >= 1
      mint ww = one, xx = one * dy[2], yy = one;
      u <<= 2;
      for (int jh = 4; jh < u;) {
        ww = xx * xx, yy = xx * imag;
        int j0 = jh * v;
        int je = j0 + v;
        int j2 = je + v;
        for (; j0 < je; ++j0, ++j2) {
          mint t0 = a[j0], t1 = a[j0 + v], t2 = a[j2], t3 = a[j2 + v];
          mint t0p1 = t0 + t1, t2p3 = t2 + t3;
          mint t0m1 = (t0 - t1) * xx, t2m3 = (t2 - t3) * yy;
          a[j0] = t0p1 + t2p3, a[j2] = (t0p1 - t2p3) * ww;
          a[j0 + v] = t0m1 + t2m3, a[j2 + v] = (t0m1 - t2m3) * ww;
        }
        xx *= dy[__builtin_ctzll(jh += 4)];
      }
      u >>= 4;
      v <<= 2;
    }
    if (k & 1) {
      u = 1 << (k - 1);
      for (int j = 0; j < u; ++j) {
        mint ajv = a[j] - a[j + u];
        a[j] += a[j + u];
        a[j + u] = ajv;
      }
    }
  }

  void ntt(vector<mint> &a) {
    if ((int)a.size() <= 1) return;
    fft4(a, __builtin_ctz(a.size()));
  }

  void intt(vector<mint> &a) {
    if ((int)a.size() <= 1) return;
    ifft4(a, __builtin_ctz(a.size()));
    mint iv = mint(a.size()).inverse();
    for (auto &x : a) x *= iv;
  }

  vector<mint> multiply(const vector<mint> &a, const vector<mint> &b) {
    int l = a.size() + b.size() - 1;
    if (min<int>(a.size(), b.size()) <= 40) {
      vector<mint> s(l);
      for (int i = 0; i < (int)a.size(); ++i)
        for (int j = 0; j < (int)b.size(); ++j) s[i + j] += a[i] * b[j];
      return s;
    }
    int k = 2, M = 4;
    while (M < l) M <<= 1, ++k;
    setwy(k);
    vector<mint> s(M);
    for (int i = 0; i < (int)a.size(); ++i) s[i] = a[i];
    fft4(s, k);
    if (a.size() == b.size() && a == b) {
      for (int i = 0; i < M; ++i) s[i] *= s[i];
    } else {
      vector<mint> t(M);
      for (int i = 0; i < (int)b.size(); ++i) t[i] = b[i];
      fft4(t, k);
      for (int i = 0; i < M; ++i) s[i] *= t[i];
    }
    ifft4(s, k);
    s.resize(l);
    mint invm = mint(M).inverse();
    for (int i = 0; i < l; ++i) s[i] *= invm;
    return s;
  }

  void ntt_doubling(vector<mint> &a) {
    int M = (int)a.size();
    auto b = a;
    intt(b);
    mint r = 1, zeta = mint(pr).pow((mint::get_mod() - 1) / (M << 1));
    for (int i = 0; i < M; i++) b[i] *= r, r *= zeta;
    ntt(b);
    copy(begin(b), end(b), back_inserter(a));
  }
};
#line 5 "fps/ntt-friendly-fps.hpp"

template <typename mint>
void FormalPowerSeries<mint>::set_fft() {
  if (!ntt_ptr) ntt_ptr = new NTT<mint>;
}

template <typename mint>
FormalPowerSeries<mint>& FormalPowerSeries<mint>::operator*=(
    const FormalPowerSeries<mint>& r) {
  if (this->empty() || r.empty()) {
    this->clear();
    return *this;
  }
  set_fft();
  auto ret = static_cast<NTT<mint>*>(ntt_ptr)->multiply(*this, r);
  return *this = FormalPowerSeries<mint>(ret.begin(), ret.end());
}

template <typename mint>
void FormalPowerSeries<mint>::ntt() {
  set_fft();
  static_cast<NTT<mint>*>(ntt_ptr)->ntt(*this);
}

template <typename mint>
void FormalPowerSeries<mint>::intt() {
  set_fft();
  static_cast<NTT<mint>*>(ntt_ptr)->intt(*this);
}

template <typename mint>
void FormalPowerSeries<mint>::ntt_doubling() {
  set_fft();
  static_cast<NTT<mint>*>(ntt_ptr)->ntt_doubling(*this);
}

template <typename mint>
int FormalPowerSeries<mint>::ntt_pr() {
  set_fft();
  return static_cast<NTT<mint>*>(ntt_ptr)->pr;
}

template <typename mint>
FormalPowerSeries<mint> FormalPowerSeries<mint>::inv(int deg) const {
  assert((*this)[0] != mint(0));
  if (deg == -1) deg = (int)this->size();
  FormalPowerSeries<mint> res(deg);
  res[0] = {mint(1) / (*this)[0]};
  for (int d = 1; d < deg; d <<= 1) {
    FormalPowerSeries<mint> f(2 * d), g(2 * d);
    for (int j = 0; j < min((int)this->size(), 2 * d); j++) f[j] = (*this)[j];
    for (int j = 0; j < d; j++) g[j] = res[j];
    f.ntt();
    g.ntt();
    for (int j = 0; j < 2 * d; j++) f[j] *= g[j];
    f.intt();
    for (int j = 0; j < d; j++) f[j] = 0;
    f.ntt();
    for (int j = 0; j < 2 * d; j++) f[j] *= g[j];
    f.intt();
    for (int j = d; j < min(2 * d, deg); j++) res[j] = -f[j];
  }
  return res.pre(deg);
}

template <typename mint>
FormalPowerSeries<mint> FormalPowerSeries<mint>::exp(int deg) const {
  using fps = FormalPowerSeries<mint>;
  assert((*this).size() == 0 || (*this)[0] == mint(0));
  if (deg == -1) deg = this->size();

  fps inv;
  inv.reserve(deg + 1);
  inv.push_back(mint(0));
  inv.push_back(mint(1));

  auto inplace_integral = [&](fps& F) -> void {
    const int n = (int)F.size();
    auto mod = mint::get_mod();
    while ((int)inv.size() <= n) {
      int i = inv.size();
      inv.push_back((-inv[mod % i]) * (mod / i));
    }
    F.insert(begin(F), mint(0));
    for (int i = 1; i <= n; i++) F[i] *= inv[i];
  };

  auto inplace_diff = [](fps& F) -> void {
    if (F.empty()) return;
    F.erase(begin(F));
    mint coeff = 1, one = 1;
    for (int i = 0; i < (int)F.size(); i++) {
      F[i] *= coeff;
      coeff += one;
    }
  };

  fps b{1, 1 < (int)this->size() ? (*this)[1] : 0}, c{1}, z1, z2{1, 1};
  for (int m = 2; m < deg; m *= 2) {
    auto y = b;
    y.resize(2 * m);
    y.ntt();
    z1 = z2;
    fps z(m);
    for (int i = 0; i < m; ++i) z[i] = y[i] * z1[i];
    z.intt();
    fill(begin(z), begin(z) + m / 2, mint(0));
    z.ntt();
    for (int i = 0; i < m; ++i) z[i] *= -z1[i];
    z.intt();
    c.insert(end(c), begin(z) + m / 2, end(z));
    z2 = c;
    z2.resize(2 * m);
    z2.ntt();
    fps x(begin(*this), begin(*this) + min<int>(this->size(), m));
    x.resize(m);
    inplace_diff(x);
    x.push_back(mint(0));
    x.ntt();
    for (int i = 0; i < m; ++i) x[i] *= y[i];
    x.intt();
    x -= b.diff();
    x.resize(2 * m);
    for (int i = 0; i < m - 1; ++i) x[m + i] = x[i], x[i] = mint(0);
    x.ntt();
    for (int i = 0; i < 2 * m; ++i) x[i] *= z2[i];
    x.intt();
    x.pop_back();
    inplace_integral(x);
    for (int i = m; i < min<int>(this->size(), 2 * m); ++i) x[i] += (*this)[i];
    fill(begin(x), begin(x) + m, mint(0));
    x.ntt();
    for (int i = 0; i < 2 * m; ++i) x[i] *= y[i];
    x.intt();
    b.insert(end(b), begin(x) + m, end(x));
  }
  return fps{begin(b), begin(b) + deg};
}

/**
 * @brief NTT mod用FPSライブラリ
 * @docs docs/fps/ntt-friendly-fps.md
 */
#line 2 "misc/fastio.hpp"

#line 8 "misc/fastio.hpp"

using namespace std;

#line 2 "internal/internal-type-traits.hpp"

#line 4 "internal/internal-type-traits.hpp"
using namespace std;

namespace internal {
template <typename T>
using is_broadly_integral =
    typename conditional_t<is_integral_v<T> || is_same_v<T, __int128_t> ||
                               is_same_v<T, __uint128_t>,
                           true_type, false_type>::type;

template <typename T>
using is_broadly_signed =
    typename conditional_t<is_signed_v<T> || is_same_v<T, __int128_t>,
                           true_type, false_type>::type;

template <typename T>
using is_broadly_unsigned =
    typename conditional_t<is_unsigned_v<T> || is_same_v<T, __uint128_t>,
                           true_type, false_type>::type;

#define ENABLE_VALUE(x) \
  template <typename T> \
  constexpr bool x##_v = x<T>::value;

ENABLE_VALUE(is_broadly_integral);
ENABLE_VALUE(is_broadly_signed);
ENABLE_VALUE(is_broadly_unsigned);
#undef ENABLE_VALUE

#define ENABLE_HAS_TYPE(var)                                   \
  template <class, class = void>                               \
  struct has_##var : false_type {};                            \
  template <class T>                                           \
  struct has_##var<T, void_t<typename T::var>> : true_type {}; \
  template <class T>                                           \
  constexpr auto has_##var##_v = has_##var<T>::value;

#define ENABLE_HAS_VAR(var)                                     \
  template <class, class = void>                                \
  struct has_##var : false_type {};                             \
  template <class T>                                            \
  struct has_##var<T, void_t<decltype(T::var)>> : true_type {}; \
  template <class T>                                            \
  constexpr auto has_##var##_v = has_##var<T>::value;

}  // namespace internal
#line 12 "misc/fastio.hpp"

namespace fastio {
static constexpr int SZ = 1 << 17;
static constexpr int offset = 64;
char inbuf[SZ], outbuf[SZ];
int in_left = 0, in_right = 0, out_right = 0;

struct Pre {
  char num[40000];
  constexpr Pre() : num() {
    for (int i = 0; i < 10000; i++) {
      int n = i;
      for (int j = 3; j >= 0; j--) {
        num[i * 4 + j] = n % 10 + '0';
        n /= 10;
      }
    }
  }
} constexpr pre;

void load() {
  int len = in_right - in_left;
  memmove(inbuf, inbuf + in_left, len);
  in_right = len + fread(inbuf + len, 1, SZ - len, stdin);
  in_left = 0;
}
void flush() {
  fwrite(outbuf, 1, out_right, stdout);
  out_right = 0;
}
void skip_space() {
  if (in_left + offset > in_right) load();
  while (inbuf[in_left] <= ' ') in_left++;
}

void single_read(char& c) {
  if (in_left + offset > in_right) load();
  skip_space();
  c = inbuf[in_left++];
}
void single_read(string& S) {
  skip_space();
  while (true) {
    if (in_left == in_right) load();
    int i = in_left;
    for (; i != in_right; i++) {
      if (inbuf[i] <= ' ') break;
    }
    copy(inbuf + in_left, inbuf + i, back_inserter(S));
    in_left = i;
    if (i != in_right) break;
  }
}
template <typename T,
          enable_if_t<internal::is_broadly_integral_v<T>>* = nullptr>
void single_read(T& x) {
  if (in_left + offset > in_right) load();
  skip_space();
  char c = inbuf[in_left++];
  [[maybe_unused]] bool minus = false;
  if constexpr (internal::is_broadly_signed_v<T>) {
    if (c == '-') minus = true, c = inbuf[in_left++];
  }
  x = 0;
  while (c >= '0') {
    x = x * 10 + (c & 15);
    c = inbuf[in_left++];
  }
  if constexpr (internal::is_broadly_signed_v<T>) {
    if (minus) x = -x;
  }
}
void rd() {}
template <typename Head, typename... Tail>
void rd(Head& head, Tail&... tail) {
  single_read(head);
  rd(tail...);
}

void single_write(const char& c) {
  if (out_right > SZ - offset) flush();
  outbuf[out_right++] = c;
}
void single_write(const bool& b) {
  if (out_right > SZ - offset) flush();
  outbuf[out_right++] = b ? '1' : '0';
}
void single_write(const string& S) {
  flush(), fwrite(S.data(), 1, S.size(), stdout);
}
void single_write(const char* p) { flush(), fwrite(p, 1, strlen(p), stdout); }
template <typename T,
          enable_if_t<internal::is_broadly_integral_v<T>>* = nullptr>
void single_write(const T& _x) {
  if (out_right > SZ - offset) flush();
  if (_x == 0) {
    outbuf[out_right++] = '0';
    return;
  }
  T x = _x;
  if constexpr (internal::is_broadly_signed_v<T>) {
    if (x < 0) outbuf[out_right++] = '-', x = -x;
  }
  constexpr int buffer_size = sizeof(T) * 10 / 4;
  char buf[buffer_size];
  int i = buffer_size;
  while (x >= 10000) {
    i -= 4;
    memcpy(buf + i, pre.num + (x % 10000) * 4, 4);
    x /= 10000;
  }
  if (x < 100) {
    if (x < 10) {
      outbuf[out_right] = '0' + x;
      ++out_right;
    } else {
      uint32_t q = (uint32_t(x) * 205) >> 11;
      uint32_t r = uint32_t(x) - q * 10;
      outbuf[out_right] = '0' + q;
      outbuf[out_right + 1] = '0' + r;
      out_right += 2;
    }
  } else {
    if (x < 1000) {
      memcpy(outbuf + out_right, pre.num + (x << 2) + 1, 3);
      out_right += 3;
    } else {
      memcpy(outbuf + out_right, pre.num + (x << 2), 4);
      out_right += 4;
    }
  }
  memcpy(outbuf + out_right, buf + i, buffer_size - i);
  out_right += buffer_size - i;
}
void wt() {}
template <typename Head, typename... Tail>
void wt(const Head& head, const Tail&... tail) {
  single_write(head);
  wt(forward<const Tail>(tail)...);
}
template <typename... Args>
void wtn(const Args&... x) {
  wt(forward<const Args>(x)...);
  wt('\n');
}

struct Dummy {
  Dummy() { atexit(flush); }
} dummy;

}  // namespace fastio
using fastio::rd;
using fastio::skip_space;
using fastio::wt;
using fastio::wtn;
#line 10 "verify/verify-yosupo-fps/yosupo-composition-fast.test.cpp"

using namespace Nyaan; void Nyaan::solve() {
  using mint = LazyMontgomeryModInt<998244353>;
  using fps = FormalPowerSeries<mint>;
  int N;
  rd(N);
  fps f(N), g(N);
  for (int i = 0; i < N; i++) {
    int n;
    rd(n);
    f[i] = n;
  }
  for (int i = 0; i < N; i++) {
    int n;
    rd(n);
    g[i] = n;
  }
  fps R = Composition(g, f);
  for (int i = 0; i < (int)R.size(); i++) {
    if (i) wt(' ');
    wt(R[i].get());
  }
  wt('\n');
}
Back to top page