Nyaan's Library

This documentation is automatically generated by online-judge-tools/verification-helper

View on GitHub

:heavy_check_mark: verify/verify-yosupo-ds/yosupo-range-add-range-sum-linkcuttree.test.cpp

Depends on

Code

#define PROBLEM "https://judge.yosupo.jp/problem/range_affine_range_sum"

#include "../../template/template.hpp"
//
using namespace Nyaan;

#include "../../modint/montgomery-modint.hpp"
using mint = LazyMontgomeryModInt<998244353>;
using vm = vector<mint>;
#include "../../math/affine-transformation.hpp"
#include "../../misc/fastio.hpp"
//
#include "../../lct/link-cut-tree-lazy.hpp"
//

using T = pair<mint, mint>;
using E = Affine<mint>;
T f(T a, T b) { return T(a.first + b.first, a.second + b.second); }
T g(T a, E b) { return T(a.first * b.a + a.second * b.b, a.second); }
E h(E a, E b) { return a * b; };
T ts(T a) { return a; }

using namespace Nyaan;
void Nyaan::solve() {
  int N, Q;
  rd(N, Q);

  using LCT = LazyLinkCutTree<T, E, f, g, h, ts>;
  LCT lct;

  vector<LCT::Ptr> vs(N);
  rep(i, N) {
    int a;
    rd(a);
    vs[i] = lct.my_new(T(a, 1));
  }

  for (int i = 1; i < N; i++) lct.link(vs[i - 1], vs[i]);

  while (Q--) {
    int cmd;
    rd(cmd);
    if (cmd == 0) {
      int l, r, b, c;
      rd(l, r, b, c);
      lct.apply(vs[l], vs[r - 1], E(b, c));
    } else {
      int l, r;
      rd(l, r);
      T fold = lct.fold(vs[l], vs[r - 1]);
      wtn(fold.first.get());
    }
  }
}
#line 1 "verify/verify-yosupo-ds/yosupo-range-add-range-sum-linkcuttree.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/range_affine_range_sum"

#line 2 "template/template.hpp"
using namespace std;

// intrinstic
#include <immintrin.h>

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

// utility
#line 1 "template/util.hpp"
namespace Nyaan {
using ll = long long;
using i64 = long long;
using u64 = unsigned long long;
using i128 = __int128_t;
using u128 = __uint128_t;

template <typename T>
using V = vector<T>;
template <typename T>
using VV = vector<vector<T>>;
using vi = vector<int>;
using vl = vector<long long>;
using vd = V<double>;
using vs = V<string>;
using vvi = vector<vector<int>>;
using vvl = vector<vector<long long>>;
template <typename T>
using minpq = priority_queue<T, vector<T>, greater<T>>;

template <typename T, typename U>
struct P : pair<T, U> {
  template <typename... Args>
  P(Args... args) : pair<T, U>(args...) {}

  using pair<T, U>::first;
  using pair<T, U>::second;

  P &operator+=(const P &r) {
    first += r.first;
    second += r.second;
    return *this;
  }
  P &operator-=(const P &r) {
    first -= r.first;
    second -= r.second;
    return *this;
  }
  P &operator*=(const P &r) {
    first *= r.first;
    second *= r.second;
    return *this;
  }
  template <typename S>
  P &operator*=(const S &r) {
    first *= r, second *= r;
    return *this;
  }
  P operator+(const P &r) const { return P(*this) += r; }
  P operator-(const P &r) const { return P(*this) -= r; }
  P operator*(const P &r) const { return P(*this) *= r; }
  template <typename S>
  P operator*(const S &r) const {
    return P(*this) *= r;
  }
  P operator-() const { return P{-first, -second}; }
};

using pl = P<ll, ll>;
using pi = P<int, int>;
using vp = V<pl>;

constexpr int inf = 1001001001;
constexpr long long infLL = 4004004004004004004LL;

template <typename T>
int sz(const T &t) {
  return t.size();
}

template <typename T, typename U>
inline bool amin(T &x, U y) {
  return (y < x) ? (x = y, true) : false;
}
template <typename T, typename U>
inline bool amax(T &x, U y) {
  return (x < y) ? (x = y, true) : false;
}

template <typename T>
inline T Max(const vector<T> &v) {
  return *max_element(begin(v), end(v));
}
template <typename T>
inline T Min(const vector<T> &v) {
  return *min_element(begin(v), end(v));
}
template <typename T>
inline long long Sum(const vector<T> &v) {
  return accumulate(begin(v), end(v), 0LL);
}

template <typename T>
int lb(const vector<T> &v, const T &a) {
  return lower_bound(begin(v), end(v), a) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, const T &a) {
  return upper_bound(begin(v), end(v), a) - begin(v);
}

constexpr long long TEN(int n) {
  long long ret = 1, x = 10;
  for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1);
  return ret;
}

template <typename T, typename U>
pair<T, U> mkp(const T &t, const U &u) {
  return make_pair(t, u);
}

template <typename T>
vector<T> mkrui(const vector<T> &v, bool rev = false) {
  vector<T> ret(v.size() + 1);
  if (rev) {
    for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1];
  } else {
    for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];
  }
  return ret;
};

template <typename T>
vector<T> mkuni(const vector<T> &v) {
  vector<T> ret(v);
  sort(ret.begin(), ret.end());
  ret.erase(unique(ret.begin(), ret.end()), ret.end());
  return ret;
}

template <typename F>
vector<int> mkord(int N, F f) {
  vector<int> ord(N);
  iota(begin(ord), end(ord), 0);
  sort(begin(ord), end(ord), f);
  return ord;
}

template <typename T>
vector<int> mkinv(vector<T> &v) {
  int max_val = *max_element(begin(v), end(v));
  vector<int> inv(max_val + 1, -1);
  for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i;
  return inv;
}

vector<int> mkiota(int n) {
  vector<int> ret(n);
  iota(begin(ret), end(ret), 0);
  return ret;
}

template <typename T>
T mkrev(const T &v) {
  T w{v};
  reverse(begin(w), end(w));
  return w;
}

template <typename T>
bool nxp(vector<T> &v) {
  return next_permutation(begin(v), end(v));
}

// 返り値の型は入力の T に依存
// i 要素目 : [0, a[i])
template <typename T>
vector<vector<T>> product(const vector<T> &a) {
  vector<vector<T>> ret;
  vector<T> v;
  auto dfs = [&](auto rc, int i) -> void {
    if (i == (int)a.size()) {
      ret.push_back(v);
      return;
    }
    for (int j = 0; j < a[i]; j++) v.push_back(j), rc(rc, i + 1), v.pop_back();
  };
  dfs(dfs, 0);
  return ret;
}

// F : function(void(T&)), mod を取る操作
// T : 整数型のときはオーバーフローに注意する
template <typename T>
T Power(T a, long long n, const T &I, const function<void(T &)> &f) {
  T res = I;
  for (; n; f(a = a * a), n >>= 1) {
    if (n & 1) f(res = res * a);
  }
  return res;
}
// T : 整数型のときはオーバーフローに注意する
template <typename T>
T Power(T a, long long n, const T &I) {
  return Power(a, n, I, function<void(T &)>{[](T &) -> void {}});
}

}  // namespace Nyaan
#line 58 "template/template.hpp"

// bit operation
#line 1 "template/bitop.hpp"
namespace Nyaan {
__attribute__((target("popcnt"))) inline int popcnt(const u64 &a) {
  return _mm_popcnt_u64(a);
}
inline int lsb(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int ctz(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int msb(const u64 &a) { return a ? 63 - __builtin_clzll(a) : -1; }
template <typename T>
inline int gbit(const T &a, int i) {
  return (a >> i) & 1;
}
template <typename T>
inline void sbit(T &a, int i, bool b) {
  if (gbit(a, i) != b) a ^= T(1) << i;
}
constexpr long long PW(int n) { return 1LL << n; }
constexpr long long MSK(int n) { return (1LL << n) - 1; }
}  // namespace Nyaan
#line 61 "template/template.hpp"

// inout
#line 1 "template/inout.hpp"
namespace Nyaan {

template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
  os << p.first << " " << p.second;
  return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
  is >> p.first >> p.second;
  return is;
}

template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
  int s = (int)v.size();
  for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
  return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
  for (auto &x : v) is >> x;
  return is;
}

istream &operator>>(istream &is, __int128_t &x) {
  string S;
  is >> S;
  x = 0;
  int flag = 0;
  for (auto &c : S) {
    if (c == '-') {
      flag = true;
      continue;
    }
    x *= 10;
    x += c - '0';
  }
  if (flag) x = -x;
  return is;
}

istream &operator>>(istream &is, __uint128_t &x) {
  string S;
  is >> S;
  x = 0;
  for (auto &c : S) {
    x *= 10;
    x += c - '0';
  }
  return is;
}

ostream &operator<<(ostream &os, __int128_t x) {
  if (x == 0) return os << 0;
  if (x < 0) os << '-', x = -x;
  string S;
  while (x) S.push_back('0' + x % 10), x /= 10;
  reverse(begin(S), end(S));
  return os << S;
}
ostream &operator<<(ostream &os, __uint128_t x) {
  if (x == 0) return os << 0;
  string S;
  while (x) S.push_back('0' + x % 10), x /= 10;
  reverse(begin(S), end(S));
  return os << S;
}

void in() {}
template <typename T, class... U>
void in(T &t, U &...u) {
  cin >> t;
  in(u...);
}

void out() { cout << "\n"; }
template <typename T, class... U, char sep = ' '>
void out(const T &t, const U &...u) {
  cout << t;
  if (sizeof...(u)) cout << sep;
  out(u...);
}

struct IoSetupNya {
  IoSetupNya() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    cout << fixed << setprecision(15);
    cerr << fixed << setprecision(7);
  }
} iosetupnya;

}  // namespace Nyaan
#line 64 "template/template.hpp"

// debug
#line 1 "template/debug.hpp"
namespace DebugImpl {

template <typename U, typename = void>
struct is_specialize : false_type {};
template <typename U>
struct is_specialize<
    U, typename conditional<false, typename U::iterator, void>::type>
    : true_type {};
template <typename U>
struct is_specialize<
    U, typename conditional<false, decltype(U::first), void>::type>
    : true_type {};
template <typename U>
struct is_specialize<U, enable_if_t<is_integral<U>::value, void>> : true_type {
};

void dump(const char& t) { cerr << t; }

void dump(const string& t) { cerr << t; }

void dump(const bool& t) { cerr << (t ? "true" : "false"); }

void dump(__int128_t t) {
  if (t == 0) cerr << 0;
  if (t < 0) cerr << '-', t = -t;
  string S;
  while (t) S.push_back('0' + t % 10), t /= 10;
  reverse(begin(S), end(S));
  cerr << S;
}

void dump(__uint128_t t) {
  if (t == 0) cerr << 0;
  string S;
  while (t) S.push_back('0' + t % 10), t /= 10;
  reverse(begin(S), end(S));
  cerr << S;
}

template <typename U,
          enable_if_t<!is_specialize<U>::value, nullptr_t> = nullptr>
void dump(const U& t) {
  cerr << t;
}

template <typename T>
void dump(const T& t, enable_if_t<is_integral<T>::value>* = nullptr) {
  string res;
  if (t == Nyaan::inf) res = "inf";
  if constexpr (is_signed<T>::value) {
    if (t == -Nyaan::inf) res = "-inf";
  }
  if constexpr (sizeof(T) == 8) {
    if (t == Nyaan::infLL) res = "inf";
    if constexpr (is_signed<T>::value) {
      if (t == -Nyaan::infLL) res = "-inf";
    }
  }
  if (res.empty()) res = to_string(t);
  cerr << res;
}

template <typename T, typename U>
void dump(const pair<T, U>&);
template <typename T>
void dump(const pair<T*, int>&);

template <typename T>
void dump(const T& t,
          enable_if_t<!is_void<typename T::iterator>::value>* = nullptr) {
  cerr << "[ ";
  for (auto it = t.begin(); it != t.end();) {
    dump(*it);
    cerr << (++it == t.end() ? "" : ", ");
  }
  cerr << " ]";
}

template <typename T, typename U>
void dump(const pair<T, U>& t) {
  cerr << "( ";
  dump(t.first);
  cerr << ", ";
  dump(t.second);
  cerr << " )";
}

template <typename T>
void dump(const pair<T*, int>& t) {
  cerr << "[ ";
  for (int i = 0; i < t.second; i++) {
    dump(t.first[i]);
    cerr << (i == t.second - 1 ? "" : ", ");
  }
  cerr << " ]";
}

void trace() { cerr << endl; }
template <typename Head, typename... Tail>
void trace(Head&& head, Tail&&... tail) {
  cerr << " ";
  dump(head);
  if (sizeof...(tail) != 0) cerr << ",";
  trace(forward<Tail>(tail)...);
}

}  // namespace DebugImpl

#ifdef NyaanDebug
#define trc(...)                            \
  do {                                      \
    cerr << "## " << #__VA_ARGS__ << " = "; \
    DebugImpl::trace(__VA_ARGS__);          \
  } while (0)
#else
#define trc(...) (void(0))
#endif

#ifdef NyaanLocal
#define trc2(...)                           \
  do {                                      \
    cerr << "## " << #__VA_ARGS__ << " = "; \
    DebugImpl::trace(__VA_ARGS__);          \
  } while (0)
#else
#define trc2(...) (void(0))
#endif
#line 67 "template/template.hpp"

// macro
#line 1 "template/macro.hpp"
#define each(x, v) for (auto&& x : v)
#define each2(x, y, v) for (auto&& [x, y] : v)
#define all(v) (v).begin(), (v).end()
#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)
#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)
#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)
#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)
#define reg(i, a, b) for (long long i = (a); i < (b); i++)
#define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--)
#define fi first
#define se second
#define ini(...)   \
  int __VA_ARGS__; \
  in(__VA_ARGS__)
#define inl(...)         \
  long long __VA_ARGS__; \
  in(__VA_ARGS__)
#define ins(...)      \
  string __VA_ARGS__; \
  in(__VA_ARGS__)
#define in2(s, t)                           \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i]);                         \
  }
#define in3(s, t, u)                        \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i]);                   \
  }
#define in4(s, t, u, v)                     \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i], v[i]);             \
  }
#define die(...)             \
  do {                       \
    Nyaan::out(__VA_ARGS__); \
    return;                  \
  } while (0)
#line 70 "template/template.hpp"

namespace Nyaan {
void solve();
}
int main() { Nyaan::solve(); }
#line 4 "verify/verify-yosupo-ds/yosupo-range-add-range-sum-linkcuttree.test.cpp"
//
using namespace Nyaan;

#line 2 "modint/montgomery-modint.hpp"

template <uint32_t mod>
struct LazyMontgomeryModInt {
  using mint = LazyMontgomeryModInt;
  using i32 = int32_t;
  using u32 = uint32_t;
  using u64 = uint64_t;

  static constexpr u32 get_r() {
    u32 ret = mod;
    for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret;
    return ret;
  }

  static constexpr u32 r = get_r();
  static constexpr u32 n2 = -u64(mod) % mod;
  static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30");
  static_assert((mod & 1) == 1, "invalid, mod % 2 == 0");
  static_assert(r * mod == 1, "this code has bugs.");

  u32 a;

  constexpr LazyMontgomeryModInt() : a(0) {}
  constexpr LazyMontgomeryModInt(const int64_t &b)
      : a(reduce(u64(b % mod + mod) * n2)){};

  static constexpr u32 reduce(const u64 &b) {
    return (b + u64(u32(b) * u32(-r)) * mod) >> 32;
  }

  constexpr mint &operator+=(const mint &b) {
    if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod;
    return *this;
  }

  constexpr mint &operator-=(const mint &b) {
    if (i32(a -= b.a) < 0) a += 2 * mod;
    return *this;
  }

  constexpr mint &operator*=(const mint &b) {
    a = reduce(u64(a) * b.a);
    return *this;
  }

  constexpr mint &operator/=(const mint &b) {
    *this *= b.inverse();
    return *this;
  }

  constexpr mint operator+(const mint &b) const { return mint(*this) += b; }
  constexpr mint operator-(const mint &b) const { return mint(*this) -= b; }
  constexpr mint operator*(const mint &b) const { return mint(*this) *= b; }
  constexpr mint operator/(const mint &b) const { return mint(*this) /= b; }
  constexpr bool operator==(const mint &b) const {
    return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
  }
  constexpr bool operator!=(const mint &b) const {
    return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
  }
  constexpr mint operator-() const { return mint() - mint(*this); }
  constexpr mint operator+() const { return mint(*this); }

  constexpr mint pow(u64 n) const {
    mint ret(1), mul(*this);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }

  constexpr mint inverse() const {
    int x = get(), y = mod, u = 1, v = 0, t = 0, tmp = 0;
    while (y > 0) {
      t = x / y;
      x -= t * y, u -= t * v;
      tmp = x, x = y, y = tmp;
      tmp = u, u = v, v = tmp;
    }
    return mint{u};
  }

  friend ostream &operator<<(ostream &os, const mint &b) {
    return os << b.get();
  }

  friend istream &operator>>(istream &is, mint &b) {
    int64_t t;
    is >> t;
    b = LazyMontgomeryModInt<mod>(t);
    return (is);
  }

  constexpr u32 get() const {
    u32 ret = reduce(a);
    return ret >= mod ? ret - mod : ret;
  }

  static constexpr u32 get_mod() { return mod; }
};
#line 8 "verify/verify-yosupo-ds/yosupo-range-add-range-sum-linkcuttree.test.cpp"
using mint = LazyMontgomeryModInt<998244353>;
using vm = vector<mint>;
#line 2 "math/affine-transformation.hpp"

template <typename mint>
struct Affine {
  mint a, b;
  constexpr Affine() : a(1), b(0) {}
  constexpr Affine(mint _a, mint _b) : a(_a), b(_b) {}
  mint operator()(mint x) { return a * x + b; }
  // R(L(x))
  friend Affine operator*(const Affine& l, const Affine& r) {
    return Affine(l.a * r.a, l.b * r.a + r.b);
  }
  bool operator==(const Affine& r) const { return a == r.a && b == r.b; }
  bool operator!=(const Affine& r) const { return a != r.a || b != r.b; }
  friend ostream& operator<<(ostream& os, const Affine& r) {
    os << "( " << r.a << ", " << r.b << " )";
    return os;
  }
};

/**
 * @brief アフィン変換
 */
#line 2 "misc/fastio.hpp"

#line 8 "misc/fastio.hpp"

using namespace std;

#line 2 "internal/internal-type-traits.hpp"

#line 4 "internal/internal-type-traits.hpp"
using namespace std;

namespace internal {
template <typename T>
using is_broadly_integral =
    typename conditional_t<is_integral_v<T> || is_same_v<T, __int128_t> ||
                               is_same_v<T, __uint128_t>,
                           true_type, false_type>::type;

template <typename T>
using is_broadly_signed =
    typename conditional_t<is_signed_v<T> || is_same_v<T, __int128_t>,
                           true_type, false_type>::type;

template <typename T>
using is_broadly_unsigned =
    typename conditional_t<is_unsigned_v<T> || is_same_v<T, __uint128_t>,
                           true_type, false_type>::type;

#define ENABLE_VALUE(x) \
  template <typename T> \
  constexpr bool x##_v = x<T>::value;

ENABLE_VALUE(is_broadly_integral);
ENABLE_VALUE(is_broadly_signed);
ENABLE_VALUE(is_broadly_unsigned);
#undef ENABLE_VALUE

#define ENABLE_HAS_TYPE(var)                                   \
  template <class, class = void>                               \
  struct has_##var : false_type {};                            \
  template <class T>                                           \
  struct has_##var<T, void_t<typename T::var>> : true_type {}; \
  template <class T>                                           \
  constexpr auto has_##var##_v = has_##var<T>::value;

#define ENABLE_HAS_VAR(var)                                     \
  template <class, class = void>                                \
  struct has_##var : false_type {};                             \
  template <class T>                                            \
  struct has_##var<T, void_t<decltype(T::var)>> : true_type {}; \
  template <class T>                                            \
  constexpr auto has_##var##_v = has_##var<T>::value;

}  // namespace internal
#line 12 "misc/fastio.hpp"

namespace fastio {
static constexpr int SZ = 1 << 17;
static constexpr int offset = 64;
char inbuf[SZ], outbuf[SZ];
int in_left = 0, in_right = 0, out_right = 0;

struct Pre {
  char num[40000];
  constexpr Pre() : num() {
    for (int i = 0; i < 10000; i++) {
      int n = i;
      for (int j = 3; j >= 0; j--) {
        num[i * 4 + j] = n % 10 + '0';
        n /= 10;
      }
    }
  }
} constexpr pre;

void load() {
  int len = in_right - in_left;
  memmove(inbuf, inbuf + in_left, len);
  in_right = len + fread(inbuf + len, 1, SZ - len, stdin);
  in_left = 0;
}
void flush() {
  fwrite(outbuf, 1, out_right, stdout);
  out_right = 0;
}
void skip_space() {
  if (in_left + offset > in_right) load();
  while (inbuf[in_left] <= ' ') in_left++;
}

void single_read(char& c) {
  if (in_left + offset > in_right) load();
  skip_space();
  c = inbuf[in_left++];
}
void single_read(string& S) {
  skip_space();
  while (true) {
    if (in_left == in_right) load();
    int i = in_left;
    for (; i != in_right; i++) {
      if (inbuf[i] <= ' ') break;
    }
    copy(inbuf + in_left, inbuf + i, back_inserter(S));
    in_left = i;
    if (i != in_right) break;
  }
}
template <typename T,
          enable_if_t<internal::is_broadly_integral_v<T>>* = nullptr>
void single_read(T& x) {
  if (in_left + offset > in_right) load();
  skip_space();
  char c = inbuf[in_left++];
  [[maybe_unused]] bool minus = false;
  if constexpr (internal::is_broadly_signed_v<T>) {
    if (c == '-') minus = true, c = inbuf[in_left++];
  }
  x = 0;
  while (c >= '0') {
    x = x * 10 + (c & 15);
    c = inbuf[in_left++];
  }
  if constexpr (internal::is_broadly_signed_v<T>) {
    if (minus) x = -x;
  }
}
void rd() {}
template <typename Head, typename... Tail>
void rd(Head& head, Tail&... tail) {
  single_read(head);
  rd(tail...);
}

void single_write(const char& c) {
  if (out_right > SZ - offset) flush();
  outbuf[out_right++] = c;
}
void single_write(const bool& b) {
  if (out_right > SZ - offset) flush();
  outbuf[out_right++] = b ? '1' : '0';
}
void single_write(const string& S) {
  flush(), fwrite(S.data(), 1, S.size(), stdout);
}
void single_write(const char* p) { flush(), fwrite(p, 1, strlen(p), stdout); }
template <typename T,
          enable_if_t<internal::is_broadly_integral_v<T>>* = nullptr>
void single_write(const T& _x) {
  if (out_right > SZ - offset) flush();
  if (_x == 0) {
    outbuf[out_right++] = '0';
    return;
  }
  T x = _x;
  if constexpr (internal::is_broadly_signed_v<T>) {
    if (x < 0) outbuf[out_right++] = '-', x = -x;
  }
  constexpr int buffer_size = sizeof(T) * 10 / 4;
  char buf[buffer_size];
  int i = buffer_size;
  while (x >= 10000) {
    i -= 4;
    memcpy(buf + i, pre.num + (x % 10000) * 4, 4);
    x /= 10000;
  }
  if (x < 100) {
    if (x < 10) {
      outbuf[out_right] = '0' + x;
      ++out_right;
    } else {
      uint32_t q = (uint32_t(x) * 205) >> 11;
      uint32_t r = uint32_t(x) - q * 10;
      outbuf[out_right] = '0' + q;
      outbuf[out_right + 1] = '0' + r;
      out_right += 2;
    }
  } else {
    if (x < 1000) {
      memcpy(outbuf + out_right, pre.num + (x << 2) + 1, 3);
      out_right += 3;
    } else {
      memcpy(outbuf + out_right, pre.num + (x << 2), 4);
      out_right += 4;
    }
  }
  memcpy(outbuf + out_right, buf + i, buffer_size - i);
  out_right += buffer_size - i;
}
void wt() {}
template <typename Head, typename... Tail>
void wt(const Head& head, const Tail&... tail) {
  single_write(head);
  wt(forward<const Tail>(tail)...);
}
template <typename... Args>
void wtn(const Args&... x) {
  wt(forward<const Args>(x)...);
  wt('\n');
}

struct Dummy {
  Dummy() { atexit(flush); }
} dummy;

}  // namespace fastio
using fastio::rd;
using fastio::skip_space;
using fastio::wt;
using fastio::wtn;
#line 12 "verify/verify-yosupo-ds/yosupo-range-add-range-sum-linkcuttree.test.cpp"
//
#line 2 "lct/link-cut-tree-lazy.hpp"

#line 2 "lct/splay-lazy-reversible.hpp"

#line 2 "lct/lazy-reversible-bbst-base.hpp"

template <typename Tree, typename Node, typename T, typename E, T (*f)(T, T),
          T (*g)(T, E), E (*h)(E, E), T (*ts)(T)>
struct LazyReversibleBBST : Tree {
  using Tree::merge;
  using Tree::split;
  using typename Tree::Ptr;

  LazyReversibleBBST() = default;

  void toggle(Ptr t) {
    if (!t) return;
    swap(t->l, t->r);
    t->sum = ts(t->sum);
    t->rev ^= true;
  }

  T fold(Ptr &t, int a, int b) {
    auto x = split(t, a);
    auto y = split(x.second, b - a);
    auto ret = sum(y.first);
    t = merge(x.first, merge(y.first, y.second));
    return ret;
  }

  void reverse(Ptr &t, int a, int b) {
    auto x = split(t, a);
    auto y = split(x.second, b - a);
    toggle(y.first);
    t = merge(x.first, merge(y.first, y.second));
  }

  void apply(Ptr &t, int a, int b, const E &e) {
    auto x = split(t, a);
    auto y = split(x.second, b - a);
    propagate(y.first, e);
    t = merge(x.first, merge(y.first, y.second));
  }

 protected:
  inline T sum(const Ptr t) { return t ? t->sum : T(); }

  Ptr update(Ptr t) override {
    if (!t) return t;
    t->cnt = 1;
    t->sum = t->key;
    if (t->l) t->cnt += t->l->cnt, t->sum = f(t->l->sum, t->sum);
    if (t->r) t->cnt += t->r->cnt, t->sum = f(t->sum, t->r->sum);
    return t;
  }

  void push(Ptr t) override {
    if (!t) return;
    if (t->rev) {
      if (t->l) toggle(t->l);
      if (t->r) toggle(t->r);
      t->rev = false;
    }
    if (t->lazy != E()) {
      if (t->l) propagate(t->l, t->lazy);
      if (t->r) propagate(t->r, t->lazy);
      t->lazy = E();
    }
  }

  void propagate(Ptr t, const E &x) {
    t->lazy = h(t->lazy, x);
    t->key = g(t->key, x);
    t->sum = g(t->sum, x);
  }
};

/**
 * @brief 遅延伝搬反転可能平衡二分木(基底クラス)
 */
#line 2 "lct/splay-base.hpp"

template <typename Node>
struct SplayTreeBase {
  using Ptr = Node *;
  template <typename... Args>
  Ptr my_new(const Args &...args) {
    return new Node(args...);
  }
  void my_del(Ptr p) { delete p; }

  bool is_root(Ptr t) { return !(t->p) || (t->p->l != t && t->p->r != t); }

  int size(Ptr t) const { return count(t); }

  virtual void splay(Ptr t) {
    if (!t) return;
    push(t);
    while (!is_root(t)) {
      Ptr q = t->p;
      if (is_root(q)) {
        push(q), push(t);
        rot(t);
      } else {
        Ptr r = q->p;
        push(r), push(q), push(t);
        if (pos(q) == pos(t))
          rot(q), rot(t);
        else
          rot(t), rot(t);
      }
    }
  }

  Ptr get_left(Ptr t) {
    while (t->l) push(t), t = t->l;
    return t;
  }

  Ptr get_right(Ptr t) {
    while (t->r) push(t), t = t->r;
    return t;
  }

  pair<Ptr, Ptr> split(Ptr t, int k) {
    if (!t) return {nullptr, nullptr};
    if (k == 0) return {nullptr, t};
    if (k == count(t)) return {t, nullptr};
    push(t);
    if (k <= count(t->l)) {
      auto x = split(t->l, k);
      t->l = x.second;
      t->p = nullptr;
      if (x.second) x.second->p = t;
      return {x.first, update(t)};
    } else {
      auto x = split(t->r, k - count(t->l) - 1);
      t->r = x.first;
      t->p = nullptr;
      if (x.first) x.first->p = t;
      return {update(t), x.second};
    }
  }

  Ptr merge(Ptr l, Ptr r) {
    if (!l && !r) return nullptr;
    if (!l) return splay(r), r;
    if (!r) return splay(l), l;
    splay(l), splay(r);
    l = get_right(l);
    splay(l);
    l->r = r;
    r->p = l;
    update(l);
    return l;
  }

  using Key = decltype(Node::key);
  Ptr build(const vector<Key> &v) { return build(0, v.size(), v); }
  Ptr build(int l, int r, const vector<Key> &v) {
    if (l == r) return nullptr;
    if (l + 1 == r) return my_new(v[l]);
    return merge(build(l, (l + r) >> 1, v), build((l + r) >> 1, r, v));
  }

  template <typename... Args>
  void insert(Ptr &t, int k, const Args &...args) {
    splay(t);
    auto x = split(t, k);
    t = merge(merge(x.first, my_new(args...)), x.second);
  }

  void erase(Ptr &t, int k) {
    splay(t);
    auto x = split(t, k);
    auto y = split(x.second, 1);
    my_del(y.first);
    t = merge(x.first, y.second);
  }

  virtual Ptr update(Ptr t) = 0;

 protected:
  inline int count(Ptr t) const { return t ? t->cnt : 0; }

  virtual void push(Ptr t) = 0;

  Ptr build(const vector<Ptr> &v) { return build(0, v.size(), v); }

  Ptr build(int l, int r, const vector<Ptr> &v) {
    if (l + 1 >= r) return v[l];
    return merge(build(l, (l + r) >> 1, v), build((l + r) >> 1, r, v));
  }

  inline int pos(Ptr t) {
    if (t->p) {
      if (t->p->l == t) return -1;
      if (t->p->r == t) return 1;
    }
    return 0;
  }

  virtual void rot(Ptr t) {
    Ptr x = t->p, y = x->p;
    if (pos(t) == -1) {
      if ((x->l = t->r)) t->r->p = x;
      t->r = x, x->p = t;
    } else {
      if ((x->r = t->l)) t->l->p = x;
      t->l = x, x->p = t;
    }
    update(x), update(t);
    if ((t->p = y)) {
      if (y->l == x) y->l = t;
      if (y->r == x) y->r = t;
    }
  }
};

/**
 * @brief Splay Tree(base)
 */
#line 5 "lct/splay-lazy-reversible.hpp"

template <typename T, typename E>
struct LazyReversibleSplayTreeNode {
  using Ptr = LazyReversibleSplayTreeNode *;
  Ptr l, r, p;
  T key, sum;
  E lazy;
  int cnt;
  bool rev;

  LazyReversibleSplayTreeNode(const T &t = T(), const E &e = E())
      : l(), r(), p(), key(t), sum(t), lazy(e), cnt(1), rev(false) {}
};

template <typename T, typename E, T (*f)(T, T), T (*g)(T, E), E (*h)(E, E),
          T (*ts)(T)>
struct LazyReversibleSplayTree
    : LazyReversibleBBST<SplayTreeBase<LazyReversibleSplayTreeNode<T, E>>,
                         LazyReversibleSplayTreeNode<T, E>, T, E, f, g, h, ts> {
  using Node = LazyReversibleSplayTreeNode<T, E>;
};

/**
 * @brief 遅延伝搬反転可能Splay Tree
 */
#line 4 "lct/link-cut-tree-lazy.hpp"

//
#line 2 "lct/link-cut-base.hpp"

template <typename Splay>
struct LinkCutBase : Splay {
  using Node = typename Splay::Node;
  using Ptr = Node*;

  virtual Ptr expose(Ptr t) {
    Ptr rp = nullptr;
    for (Ptr cur = t; cur; cur = cur->p) {
      this->splay(cur);
      cur->r = rp;
      this->update(cur);
      rp = cur;
    }
    this->splay(t);
    return rp;
  }

  virtual void link(Ptr u, Ptr v) {
    evert(u);
    expose(v);
    u->p = v;
  }

  void cut(Ptr u, Ptr v) {
    evert(u);
    expose(v);
    assert(u->p == v);
    v->l = u->p = nullptr;
    this->update(v);
  }

  void evert(Ptr t) {
    expose(t);
    this->toggle(t);
    this->push(t);
  }

  Ptr lca(Ptr u, Ptr v) {
    if (get_root(u) != get_root(v)) return nullptr;
    expose(u);
    return expose(v);
  }

  Ptr get_kth(Ptr x, int k) {
    expose(x);
    while (x) {
      this->push(x);
      if (x->r && x->r->sz > k) {
        x = x->r;
      } else {
        if (x->r) k -= x->r->sz;
        if (k == 0) return x;
        k -= 1;
        x = x->l;
      }
    }
    return nullptr;
  }

  Ptr get_root(Ptr x) {
    expose(x);
    while (x->l) this->push(x), x = x->l;
    return x;
  }

  Ptr get_parent(Ptr x) {
    expose(x);
    Ptr p = x->l;
    if(p == nullptr) return nullptr;
    while (true) {
      this->push(p);
      if (p->r == nullptr) return p;
      p = p->r;
    }
    exit(1);
  }

  virtual void set_key(Ptr t, const decltype(Node::key)& key) {
    this->splay(t);
    t->key = key;
    this->update(t);
  }

  virtual decltype(Node::key) get_key(Ptr t) { return t->key; }

  decltype(Node::key) fold(Ptr u, Ptr v) {
    evert(u);
    expose(v);
    return v->sum;
  }
};

/**
 * @brief Link/Cut Tree(base)
 * @docs docs/lct/link-cut-tree.md
 */
#line 7 "lct/link-cut-tree-lazy.hpp"

template <typename T, typename E, T (*f)(T, T), T (*g)(T, E), E (*h)(E, E),
          T (*ts)(T)>
struct LazyLinkCutTree
    : LinkCutBase<LazyReversibleSplayTree<T, E, f, g, h, ts>> {
  using base = LinkCutBase<LazyReversibleSplayTree<T, E, f, g, h, ts>>;
  using Ptr = typename base::Ptr;

  void set_key(Ptr t, const T& key) override {
    this->evert(t);
    t->key = key;
    this->update(t);
  }

  T get_key(Ptr t) override {
    this->evert(t);
    return t->key;
  }

  void apply(Ptr u, Ptr v, const E& e) {
    this->evert(u);
    this->expose(v);
    this->propagate(v, e);
  }
};

/**
 * @brief 遅延伝搬Link/Cut Tree
 */
#line 14 "verify/verify-yosupo-ds/yosupo-range-add-range-sum-linkcuttree.test.cpp"
//

using T = pair<mint, mint>;
using E = Affine<mint>;
T f(T a, T b) { return T(a.first + b.first, a.second + b.second); }
T g(T a, E b) { return T(a.first * b.a + a.second * b.b, a.second); }
E h(E a, E b) { return a * b; };
T ts(T a) { return a; }

using namespace Nyaan;
void Nyaan::solve() {
  int N, Q;
  rd(N, Q);

  using LCT = LazyLinkCutTree<T, E, f, g, h, ts>;
  LCT lct;

  vector<LCT::Ptr> vs(N);
  rep(i, N) {
    int a;
    rd(a);
    vs[i] = lct.my_new(T(a, 1));
  }

  for (int i = 1; i < N; i++) lct.link(vs[i - 1], vs[i]);

  while (Q--) {
    int cmd;
    rd(cmd);
    if (cmd == 0) {
      int l, r, b, c;
      rd(l, r, b, c);
      lct.apply(vs[l], vs[r - 1], E(b, c));
    } else {
      int l, r;
      rd(l, r);
      T fold = lct.fold(vs[l], vs[r - 1]);
      wtn(fold.first.get());
    }
  }
}
Back to top page