Nyaan's Library

This documentation is automatically generated by online-judge-tools/verification-helper

View on GitHub

:heavy_check_mark: verify/verify-yosupo-ds/yosupo-offline-dynamic-connectivity.test.cpp

Depends on

Code

#define PROBLEM \
  "https://judge.yosupo.jp/problem/dynamic_graph_vertex_add_component_sum"

#include "../../template/template.hpp"
//
#include "../../graph/offline-dynamic-connectivity.hpp"
#include "../../lct/link-cut-tree-subtree.hpp"

using namespace Nyaan;

ll add(ll a, ll b) { return a + b; }
ll sub(ll a, ll b) { return a - b; }

void Nyaan::solve() {
  ini(N, Q);
  vl a(N);
  in(a);
  vl cmd(Q), X(Q), Y(Q);
  rep(i, Q) {
    in(cmd[i], X[i]);
    if (cmd[i] != 3) in(Y[i]);
    if (cmd[i] < 2 and X[i] > Y[i]) swap(X[i], Y[i]);
  }

  using LCT = LinkCutTreeSubtreeQuery<ll, add, sub>;
  LCT lct;
  vector<LCT::Node*> vs(N);
  rep(i, N) vs[i] = new LCT::Node(a[i]);

  OffLineDynamicConnectivity dc(N, Q);
  rep(i, Q) {
    if (cmd[i] == 0) dc.add_edge(i, X[i], Y[i]);
    if (cmd[i] == 1) dc.del_edge(i, X[i], Y[i]);
  }
  dc.build();
  vl ans;
  auto add = [&](int u, int v) { lct.link(vs[u], vs[v]); };
  auto del = [&](int u, int v) { lct.cut(vs[u], vs[v]); };
  auto query = [&](int i) {
    if (cmd[i] == 2) {
      ll k = lct.get_key(vs[X[i]]);
      lct.set_key(vs[X[i]], k + Y[i]);
    } else if (cmd[i] == 3) {
      lct.evert(vs[X[i]]);
      ans.emplace_back(lct.subtree(vs[X[i]]));
    }
  };

  dc.run(add, del, query);
  each(x, ans) out(x);
}
#line 1 "verify/verify-yosupo-ds/yosupo-offline-dynamic-connectivity.test.cpp"
#define PROBLEM \
  "https://judge.yosupo.jp/problem/dynamic_graph_vertex_add_component_sum"

#line 2 "template/template.hpp"
using namespace std;

// intrinstic
#include <immintrin.h>

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

// utility
#line 1 "template/util.hpp"
namespace Nyaan {
using ll = long long;
using i64 = long long;
using u64 = unsigned long long;
using i128 = __int128_t;
using u128 = __uint128_t;

template <typename T>
using V = vector<T>;
template <typename T>
using VV = vector<vector<T>>;
using vi = vector<int>;
using vl = vector<long long>;
using vd = V<double>;
using vs = V<string>;
using vvi = vector<vector<int>>;
using vvl = vector<vector<long long>>;
template <typename T>
using minpq = priority_queue<T, vector<T>, greater<T>>;

template <typename T, typename U>
struct P : pair<T, U> {
  template <typename... Args>
  P(Args... args) : pair<T, U>(args...) {}

  using pair<T, U>::first;
  using pair<T, U>::second;

  P &operator+=(const P &r) {
    first += r.first;
    second += r.second;
    return *this;
  }
  P &operator-=(const P &r) {
    first -= r.first;
    second -= r.second;
    return *this;
  }
  P &operator*=(const P &r) {
    first *= r.first;
    second *= r.second;
    return *this;
  }
  template <typename S>
  P &operator*=(const S &r) {
    first *= r, second *= r;
    return *this;
  }
  P operator+(const P &r) const { return P(*this) += r; }
  P operator-(const P &r) const { return P(*this) -= r; }
  P operator*(const P &r) const { return P(*this) *= r; }
  template <typename S>
  P operator*(const S &r) const {
    return P(*this) *= r;
  }
  P operator-() const { return P{-first, -second}; }
};

using pl = P<ll, ll>;
using pi = P<int, int>;
using vp = V<pl>;

constexpr int inf = 1001001001;
constexpr long long infLL = 4004004004004004004LL;

template <typename T>
int sz(const T &t) {
  return t.size();
}

template <typename T, typename U>
inline bool amin(T &x, U y) {
  return (y < x) ? (x = y, true) : false;
}
template <typename T, typename U>
inline bool amax(T &x, U y) {
  return (x < y) ? (x = y, true) : false;
}

template <typename T>
inline T Max(const vector<T> &v) {
  return *max_element(begin(v), end(v));
}
template <typename T>
inline T Min(const vector<T> &v) {
  return *min_element(begin(v), end(v));
}
template <typename T>
inline long long Sum(const vector<T> &v) {
  return accumulate(begin(v), end(v), 0LL);
}

template <typename T>
int lb(const vector<T> &v, const T &a) {
  return lower_bound(begin(v), end(v), a) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, const T &a) {
  return upper_bound(begin(v), end(v), a) - begin(v);
}

constexpr long long TEN(int n) {
  long long ret = 1, x = 10;
  for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1);
  return ret;
}

template <typename T, typename U>
pair<T, U> mkp(const T &t, const U &u) {
  return make_pair(t, u);
}

template <typename T>
vector<T> mkrui(const vector<T> &v, bool rev = false) {
  vector<T> ret(v.size() + 1);
  if (rev) {
    for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1];
  } else {
    for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];
  }
  return ret;
};

template <typename T>
vector<T> mkuni(const vector<T> &v) {
  vector<T> ret(v);
  sort(ret.begin(), ret.end());
  ret.erase(unique(ret.begin(), ret.end()), ret.end());
  return ret;
}

template <typename F>
vector<int> mkord(int N, F f) {
  vector<int> ord(N);
  iota(begin(ord), end(ord), 0);
  sort(begin(ord), end(ord), f);
  return ord;
}

template <typename T>
vector<int> mkinv(vector<T> &v) {
  int max_val = *max_element(begin(v), end(v));
  vector<int> inv(max_val + 1, -1);
  for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i;
  return inv;
}

vector<int> mkiota(int n) {
  vector<int> ret(n);
  iota(begin(ret), end(ret), 0);
  return ret;
}

template <typename T>
T mkrev(const T &v) {
  T w{v};
  reverse(begin(w), end(w));
  return w;
}

template <typename T>
bool nxp(vector<T> &v) {
  return next_permutation(begin(v), end(v));
}

// 返り値の型は入力の T に依存
// i 要素目 : [0, a[i])
template <typename T>
vector<vector<T>> product(const vector<T> &a) {
  vector<vector<T>> ret;
  vector<T> v;
  auto dfs = [&](auto rc, int i) -> void {
    if (i == (int)a.size()) {
      ret.push_back(v);
      return;
    }
    for (int j = 0; j < a[i]; j++) v.push_back(j), rc(rc, i + 1), v.pop_back();
  };
  dfs(dfs, 0);
  return ret;
}

// F : function(void(T&)), mod を取る操作
// T : 整数型のときはオーバーフローに注意する
template <typename T>
T Power(T a, long long n, const T &I, const function<void(T &)> &f) {
  T res = I;
  for (; n; f(a = a * a), n >>= 1) {
    if (n & 1) f(res = res * a);
  }
  return res;
}
// T : 整数型のときはオーバーフローに注意する
template <typename T>
T Power(T a, long long n, const T &I) {
  return Power(a, n, I, function<void(T &)>{[](T &) -> void {}});
}

}  // namespace Nyaan
#line 58 "template/template.hpp"

// bit operation
#line 1 "template/bitop.hpp"
namespace Nyaan {
__attribute__((target("popcnt"))) inline int popcnt(const u64 &a) {
  return _mm_popcnt_u64(a);
}
inline int lsb(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int ctz(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int msb(const u64 &a) { return a ? 63 - __builtin_clzll(a) : -1; }
template <typename T>
inline int gbit(const T &a, int i) {
  return (a >> i) & 1;
}
template <typename T>
inline void sbit(T &a, int i, bool b) {
  if (gbit(a, i) != b) a ^= T(1) << i;
}
constexpr long long PW(int n) { return 1LL << n; }
constexpr long long MSK(int n) { return (1LL << n) - 1; }
}  // namespace Nyaan
#line 61 "template/template.hpp"

// inout
#line 1 "template/inout.hpp"
namespace Nyaan {

template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
  os << p.first << " " << p.second;
  return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
  is >> p.first >> p.second;
  return is;
}

template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
  int s = (int)v.size();
  for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
  return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
  for (auto &x : v) is >> x;
  return is;
}

istream &operator>>(istream &is, __int128_t &x) {
  string S;
  is >> S;
  x = 0;
  int flag = 0;
  for (auto &c : S) {
    if (c == '-') {
      flag = true;
      continue;
    }
    x *= 10;
    x += c - '0';
  }
  if (flag) x = -x;
  return is;
}

istream &operator>>(istream &is, __uint128_t &x) {
  string S;
  is >> S;
  x = 0;
  for (auto &c : S) {
    x *= 10;
    x += c - '0';
  }
  return is;
}

ostream &operator<<(ostream &os, __int128_t x) {
  if (x == 0) return os << 0;
  if (x < 0) os << '-', x = -x;
  string S;
  while (x) S.push_back('0' + x % 10), x /= 10;
  reverse(begin(S), end(S));
  return os << S;
}
ostream &operator<<(ostream &os, __uint128_t x) {
  if (x == 0) return os << 0;
  string S;
  while (x) S.push_back('0' + x % 10), x /= 10;
  reverse(begin(S), end(S));
  return os << S;
}

void in() {}
template <typename T, class... U>
void in(T &t, U &...u) {
  cin >> t;
  in(u...);
}

void out() { cout << "\n"; }
template <typename T, class... U, char sep = ' '>
void out(const T &t, const U &...u) {
  cout << t;
  if (sizeof...(u)) cout << sep;
  out(u...);
}

struct IoSetupNya {
  IoSetupNya() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    cout << fixed << setprecision(15);
    cerr << fixed << setprecision(7);
  }
} iosetupnya;

}  // namespace Nyaan
#line 64 "template/template.hpp"

// debug
#line 1 "template/debug.hpp"
namespace DebugImpl {

template <typename U, typename = void>
struct is_specialize : false_type {};
template <typename U>
struct is_specialize<
    U, typename conditional<false, typename U::iterator, void>::type>
    : true_type {};
template <typename U>
struct is_specialize<
    U, typename conditional<false, decltype(U::first), void>::type>
    : true_type {};
template <typename U>
struct is_specialize<U, enable_if_t<is_integral<U>::value, void>> : true_type {
};

void dump(const char& t) { cerr << t; }

void dump(const string& t) { cerr << t; }

void dump(const bool& t) { cerr << (t ? "true" : "false"); }

void dump(__int128_t t) {
  if (t == 0) cerr << 0;
  if (t < 0) cerr << '-', t = -t;
  string S;
  while (t) S.push_back('0' + t % 10), t /= 10;
  reverse(begin(S), end(S));
  cerr << S;
}

void dump(__uint128_t t) {
  if (t == 0) cerr << 0;
  string S;
  while (t) S.push_back('0' + t % 10), t /= 10;
  reverse(begin(S), end(S));
  cerr << S;
}

template <typename U,
          enable_if_t<!is_specialize<U>::value, nullptr_t> = nullptr>
void dump(const U& t) {
  cerr << t;
}

template <typename T>
void dump(const T& t, enable_if_t<is_integral<T>::value>* = nullptr) {
  string res;
  if (t == Nyaan::inf) res = "inf";
  if constexpr (is_signed<T>::value) {
    if (t == -Nyaan::inf) res = "-inf";
  }
  if constexpr (sizeof(T) == 8) {
    if (t == Nyaan::infLL) res = "inf";
    if constexpr (is_signed<T>::value) {
      if (t == -Nyaan::infLL) res = "-inf";
    }
  }
  if (res.empty()) res = to_string(t);
  cerr << res;
}

template <typename T, typename U>
void dump(const pair<T, U>&);
template <typename T>
void dump(const pair<T*, int>&);

template <typename T>
void dump(const T& t,
          enable_if_t<!is_void<typename T::iterator>::value>* = nullptr) {
  cerr << "[ ";
  for (auto it = t.begin(); it != t.end();) {
    dump(*it);
    cerr << (++it == t.end() ? "" : ", ");
  }
  cerr << " ]";
}

template <typename T, typename U>
void dump(const pair<T, U>& t) {
  cerr << "( ";
  dump(t.first);
  cerr << ", ";
  dump(t.second);
  cerr << " )";
}

template <typename T>
void dump(const pair<T*, int>& t) {
  cerr << "[ ";
  for (int i = 0; i < t.second; i++) {
    dump(t.first[i]);
    cerr << (i == t.second - 1 ? "" : ", ");
  }
  cerr << " ]";
}

void trace() { cerr << endl; }
template <typename Head, typename... Tail>
void trace(Head&& head, Tail&&... tail) {
  cerr << " ";
  dump(head);
  if (sizeof...(tail) != 0) cerr << ",";
  trace(forward<Tail>(tail)...);
}

}  // namespace DebugImpl

#ifdef NyaanDebug
#define trc(...)                            \
  do {                                      \
    cerr << "## " << #__VA_ARGS__ << " = "; \
    DebugImpl::trace(__VA_ARGS__);          \
  } while (0)
#else
#define trc(...) (void(0))
#endif

#ifdef NyaanLocal
#define trc2(...)                           \
  do {                                      \
    cerr << "## " << #__VA_ARGS__ << " = "; \
    DebugImpl::trace(__VA_ARGS__);          \
  } while (0)
#else
#define trc2(...) (void(0))
#endif
#line 67 "template/template.hpp"

// macro
#line 1 "template/macro.hpp"
#define each(x, v) for (auto&& x : v)
#define each2(x, y, v) for (auto&& [x, y] : v)
#define all(v) (v).begin(), (v).end()
#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)
#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)
#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)
#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)
#define reg(i, a, b) for (long long i = (a); i < (b); i++)
#define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--)
#define fi first
#define se second
#define ini(...)   \
  int __VA_ARGS__; \
  in(__VA_ARGS__)
#define inl(...)         \
  long long __VA_ARGS__; \
  in(__VA_ARGS__)
#define ins(...)      \
  string __VA_ARGS__; \
  in(__VA_ARGS__)
#define in2(s, t)                           \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i]);                         \
  }
#define in3(s, t, u)                        \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i]);                   \
  }
#define in4(s, t, u, v)                     \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i], v[i]);             \
  }
#define die(...)             \
  do {                       \
    Nyaan::out(__VA_ARGS__); \
    return;                  \
  } while (0)
#line 70 "template/template.hpp"

namespace Nyaan {
void solve();
}
int main() { Nyaan::solve(); }
#line 5 "verify/verify-yosupo-ds/yosupo-offline-dynamic-connectivity.test.cpp"
//
#line 2 "graph/offline-dynamic-connectivity.hpp"

#line 2 "data-structure/rollback-union-find.hpp"

struct RollbackUnionFind {
  vector<int> data;
  stack<pair<int, int> > history;
  int inner_snap;

  RollbackUnionFind(int sz) : inner_snap(0) { data.assign(sz, -1); }

  bool unite(int x, int y) {
    x = find(x), y = find(y);
    history.emplace(x, data[x]);
    history.emplace(y, data[y]);
    if (x == y) return false;
    if (data[x] > data[y]) swap(x, y);
    data[x] += data[y];
    data[y] = x;
    return true;
  }

  int find(int k) {
    if (data[k] < 0) return k;
    return find(data[k]);
  }

  int same(int x, int y) { return find(x) == find(y); }

  int size(int k) { return (-data[find(k)]); }

  void undo() {
    data[history.top().first] = history.top().second;
    history.pop();
    data[history.top().first] = history.top().second;
    history.pop();
  }

  void snapshot() { inner_snap = int(history.size() >> 1); }

  int get_state() { return int(history.size() >> 1); }

  void rollback(int state = -1) {
    if (state == -1) state = inner_snap;
    state <<= 1;
    assert(state <= (int)history.size());
    while (state < (int)history.size()) undo();
  }
};

/**
 * @brief RollbackつきUnion Find
 * @docs docs/data-structure/rollback-union-find.md
 */
#line 2 "hashmap/hashmap.hpp"

#line 2 "hashmap/hashmap-base.hpp"

#line 4 "hashmap/hashmap-base.hpp"
using namespace std;

namespace HashMapImpl {
using u32 = uint32_t;
using u64 = uint64_t;

template <typename Key, typename Data>
struct HashMapBase;

template <typename Key, typename Data>
struct itrB
    : iterator<bidirectional_iterator_tag, Data, ptrdiff_t, Data*, Data&> {
  using base =
      iterator<bidirectional_iterator_tag, Data, ptrdiff_t, Data*, Data&>;
  using ptr = typename base::pointer;
  using ref = typename base::reference;

  u32 i;
  HashMapBase<Key, Data>* p;

  explicit constexpr itrB() : i(0), p(nullptr) {}
  explicit constexpr itrB(u32 _i, HashMapBase<Key, Data>* _p) : i(_i), p(_p) {}
  explicit constexpr itrB(u32 _i, const HashMapBase<Key, Data>* _p)
      : i(_i), p(const_cast<HashMapBase<Key, Data>*>(_p)) {}
  friend void swap(itrB& l, itrB& r) { swap(l.i, r.i), swap(l.p, r.p); }
  friend bool operator==(const itrB& l, const itrB& r) { return l.i == r.i; }
  friend bool operator!=(const itrB& l, const itrB& r) { return l.i != r.i; }
  const ref operator*() const {
    return const_cast<const HashMapBase<Key, Data>*>(p)->data[i];
  }
  ref operator*() { return p->data[i]; }
  ptr operator->() const { return &(p->data[i]); }

  itrB& operator++() {
    assert(i != p->cap && "itr::operator++()");
    do {
      i++;
      if (i == p->cap) break;
      if (p->occupied_flag[i] && !p->deleted_flag[i]) break;
    } while (true);
    return (*this);
  }
  itrB operator++(int) {
    itrB it(*this);
    ++(*this);
    return it;
  }
  itrB& operator--() {
    do {
      i--;
      if (p->occupied_flag[i] && !p->deleted_flag[i]) break;
      assert(i != 0 && "itr::operator--()");
    } while (true);
    return (*this);
  }
  itrB operator--(int) {
    itrB it(*this);
    --(*this);
    return it;
  }
};

template <typename Key, typename Data>
struct HashMapBase {
  using u32 = uint32_t;
  using u64 = uint64_t;
  using iterator = itrB<Key, Data>;
  using itr = iterator;

 protected:
  template <typename K>
  inline u64 randomized(const K& key) const {
    return u64(key) ^ r;
  }

  template <typename K,
            enable_if_t<is_same<K, Key>::value, nullptr_t> = nullptr,
            enable_if_t<is_integral<K>::value, nullptr_t> = nullptr>
  inline u32 inner_hash(const K& key) const {
    return (randomized(key) * 11995408973635179863ULL) >> shift;
  }
  template <
      typename K, enable_if_t<is_same<K, Key>::value, nullptr_t> = nullptr,
      enable_if_t<is_integral<decltype(K::first)>::value, nullptr_t> = nullptr,
      enable_if_t<is_integral<decltype(K::second)>::value, nullptr_t> = nullptr>
  inline u32 inner_hash(const K& key) const {
    u64 a = randomized(key.first), b = randomized(key.second);
    a *= 11995408973635179863ULL;
    b *= 10150724397891781847ULL;
    return (a + b) >> shift;
  }
  template <typename K,
            enable_if_t<is_same<K, Key>::value, nullptr_t> = nullptr,
            enable_if_t<is_integral<typename K::value_type>::value, nullptr_t> =
                nullptr>
  inline u32 inner_hash(const K& key) const {
    static constexpr u64 mod = (1LL << 61) - 1;
    static constexpr u64 base = 950699498548472943ULL;
    u64 res = 0;
    for (auto& elem : key) {
      __uint128_t x = __uint128_t(res) * base + (randomized(elem) & mod);
      res = (x & mod) + (x >> 61);
    }
    __uint128_t x = __uint128_t(res) * base;
    res = (x & mod) + (x >> 61);
    if (res >= mod) res -= mod;
    return res >> (shift - 3);
  }

  template <typename D = Data,
            enable_if_t<is_same<D, Key>::value, nullptr_t> = nullptr>
  inline u32 hash(const D& dat) const {
    return inner_hash(dat);
  }
  template <
      typename D = Data,
      enable_if_t<is_same<decltype(D::first), Key>::value, nullptr_t> = nullptr>
  inline u32 hash(const D& dat) const {
    return inner_hash(dat.first);
  }

  template <typename D = Data,
            enable_if_t<is_same<D, Key>::value, nullptr_t> = nullptr>
  inline Key data_to_key(const D& dat) const {
    return dat;
  }
  template <
      typename D = Data,
      enable_if_t<is_same<decltype(D::first), Key>::value, nullptr_t> = nullptr>
  inline Key data_to_key(const D& dat) const {
    return dat.first;
  }

  void reallocate(u32 ncap) {
    vector<Data> ndata(ncap);
    vector<bool> nf(ncap);
    shift = 64 - __lg(ncap);
    for (u32 i = 0; i < cap; i++) {
      if (occupied_flag[i] && !deleted_flag[i]) {
        u32 h = hash(data[i]);
        while (nf[h]) h = (h + 1) & (ncap - 1);
        ndata[h] = move(data[i]);
        nf[h] = true;
      }
    }
    data.swap(ndata);
    occupied_flag.swap(nf);
    cap = ncap;
    occupied = s;
    deleted_flag.resize(cap);
    fill(std::begin(deleted_flag), std::end(deleted_flag), false);
  }

  inline bool extend_rate(u32 x) const { return x * 2 >= cap; }

  inline bool shrink_rate(u32 x) const {
    return HASHMAP_DEFAULT_SIZE < cap && x * 10 <= cap;
  }

  inline void extend() { reallocate(cap << 1); }

  inline void shrink() { reallocate(cap >> 1); }

 public:
  u32 cap, s, occupied;
  vector<Data> data;
  vector<bool> occupied_flag, deleted_flag;
  u32 shift;
  static u64 r;
  static constexpr uint32_t HASHMAP_DEFAULT_SIZE = 4;

  explicit HashMapBase()
      : cap(HASHMAP_DEFAULT_SIZE),
        s(0),
        occupied(0),
        data(cap),
        occupied_flag(cap),
        deleted_flag(cap),
        shift(64 - __lg(cap)) {}

  itr begin() const {
    u32 h = 0;
    while (h != cap) {
      if (occupied_flag[h] && !deleted_flag[h]) break;
      h++;
    }
    return itr(h, this);
  }
  itr end() const { return itr(this->cap, this); }

  friend itr begin(const HashMapBase& h) { return h.begin(); }
  friend itr end(const HashMapBase& h) { return h.end(); }

  itr find(const Key& key) const {
    u32 h = inner_hash(key);
    while (true) {
      if (occupied_flag[h] == false) return this->end();
      if (data_to_key(data[h]) == key) {
        if (deleted_flag[h] == true) return this->end();
        return itr(h, this);
      }
      h = (h + 1) & (cap - 1);
    }
  }

  bool contain(const Key& key) const { return find(key) != this->end(); }

  itr insert(const Data& d) {
    u32 h = hash(d);
    while (true) {
      if (occupied_flag[h] == false) {
        if (extend_rate(occupied + 1)) {
          extend();
          h = hash(d);
          continue;
        }
        data[h] = d;
        occupied_flag[h] = true;
        ++occupied, ++s;
        return itr(h, this);
      }
      if (data_to_key(data[h]) == data_to_key(d)) {
        if (deleted_flag[h] == true) {
          data[h] = d;
          deleted_flag[h] = false;
          ++s;
        }
        return itr(h, this);
      }
      h = (h + 1) & (cap - 1);
    }
  }

  // tips for speed up :
  // if return value is unnecessary, make argument_2 false.
  itr erase(itr it, bool get_next = true) {
    if (it == this->end()) return this->end();
    s--;
    if (!get_next) {
      this->deleted_flag[it.i] = true;
      if (shrink_rate(s)) shrink();
      return this->end();
    }
    itr nxt = it;
    nxt++;
    this->deleted_flag[it.i] = true;
    if (shrink_rate(s)) {
      Data d = data[nxt.i];
      shrink();
      it = find(data_to_key(d));
    }
    return nxt;
  }

  itr erase(const Key& key) { return erase(find(key)); }

  int count(const Key& key) { return find(key) == end() ? 0 : 1; }

  bool empty() const { return s == 0; }

  int size() const { return s; }

  void clear() {
    fill(std::begin(occupied_flag), std::end(occupied_flag), false);
    fill(std::begin(deleted_flag), std::end(deleted_flag), false);
    s = occupied = 0;
  }

  void reserve(int n) {
    if (n <= 0) return;
    n = 1 << min(23, __lg(n) + 2);
    if (cap < u32(n)) reallocate(n);
  }
};

template <typename Key, typename Data>
uint64_t HashMapBase<Key, Data>::r =
    chrono::duration_cast<chrono::nanoseconds>(
        chrono::high_resolution_clock::now().time_since_epoch())
        .count();

}  // namespace HashMapImpl

/**
 * @brief Hash Map(base) (ハッシュマップ・基底クラス)
 */
#line 4 "hashmap/hashmap.hpp"

template <typename Key, typename Val>
struct HashMap : HashMapImpl::HashMapBase<Key, pair<Key, Val>> {
  using base = typename HashMapImpl::HashMapBase<Key, pair<Key, Val>>;
  using HashMapImpl::HashMapBase<Key, pair<Key, Val>>::HashMapBase;
  using Data = pair<Key, Val>;

  Val& operator[](const Key& k) {
    typename base::u32 h = base::inner_hash(k);
    while (true) {
      if (base::occupied_flag[h] == false) {
        if (base::extend_rate(base::occupied + 1)) {
          base::extend();
          h = base::hash(k);
          continue;
        }
        base::data[h].first = k;
        base::data[h].second = Val();
        base::occupied_flag[h] = true;
        ++base::occupied, ++base::s;
        return base::data[h].second;
      }
      if (base::data[h].first == k) {
        if (base::deleted_flag[h] == true) {
          base::data[h].second = Val();
          base::deleted_flag[h] = false;
          ++base::s;
        }
        return base::data[h].second;
      }
      h = (h + 1) & (base::cap - 1);
    }
  }

  typename base::itr emplace(const Key& key, const Val& val) {
    return base::insert(Data(key, val));
  }
};

/*
 * @brief ハッシュマップ(連想配列)
 * @docs docs/hashmap/hashmap.md
 **/
#line 5 "graph/offline-dynamic-connectivity.hpp"

struct OffLineDynamicConnectivity {
  int N, Q, segsz;
  RollbackUnionFind uf;
  vector<vector<pair<int, int>>> seg, qadd, qdel;
  HashMap<pair<int, int>, pair<int, int>> cnt;

  OffLineDynamicConnectivity(int n, int q)
      : N(n), Q(q), uf(n), qadd(q), qdel(q) {
    segsz = 1;
    while (segsz < Q) segsz *= 2;
    seg.resize(segsz * 2);
  }

  void add_edge(int t, int u, int v) { qadd[t].emplace_back(u, v); }
  void del_edge(int t, int u, int v) { qdel[t].emplace_back(u, v); }

  void build() {
    for (int i = 0; i < Q; i++) {
      for (auto& e : qadd[i]) {
        auto& dat = cnt[e];
        if (dat.second++ == 0) dat.first = i;
      }
      for (auto& e : qdel[i]) {
        auto& dat = cnt[e];
        if (--dat.second == 0) segment(e, dat.first, i);
      }
    }
    for (auto& [e, dat] : cnt) {
      if (dat.second != 0) segment(e, dat.first, Q);
    }
  }

  template <typename ADD, typename DEL, typename QUERY>
  void dfs(const ADD& add, const DEL& del, const QUERY& query, int id, int l,
           int r) {
    if (Q <= l) return;
    int state = uf.get_state();
    vector<pair<int, int>> es;
    for (auto& [u, v] : seg[id]) {
      if (!uf.same(u, v)) {
        uf.unite(u, v);
        add(u, v);
        es.emplace_back(u, v);
      }
    }
    if (l + 1 == r) {
      query(l);
    } else {
      dfs(add, del, query, id * 2 + 0, l, (l + r) >> 1);
      dfs(add, del, query, id * 2 + 1, (l + r) >> 1, r);
    }
    for (auto& [u, v] : es) del(u, v);
    uf.rollback(state);
  }

  template <typename ADD, typename DEL, typename QUERY>
  void run(const ADD& add, const DEL& del, const QUERY& query) {
    dfs(add, del, query, 1, 0, segsz);
  }

 private:
  void segment(pair<int, int>& e, int l, int r) {
    int L = l + segsz;
    int R = r + segsz;
    while (L < R) {
      if (L & 1) seg[L++].push_back(e);
      if (R & 1) seg[--R].push_back(e);
      L >>= 1, R >>= 1;
    }
  }
};
#line 2 "lct/link-cut-tree-subtree.hpp"

#line 2 "lct/reversible-bbst-base.hpp"

template <typename Tree, typename Node, typename T, T (*f)(T, T), T (*ts)(T)>
struct ReversibleBBST : Tree {
  using Tree::merge;
  using Tree::split;
  using typename Tree::Ptr;

  ReversibleBBST() = default;

  virtual void toggle(Ptr t) {
    if(!t) return;
    swap(t->l, t->r);
    t->sum = ts(t->sum);
    t->rev ^= true;
  }

  T fold(Ptr &t, int a, int b) {
    auto x = split(t, a);
    auto y = split(x.second, b - a);
    auto ret = sum(y.first);
    t = merge(x.first, merge(y.first, y.second));
    return ret;
  }

  void reverse(Ptr &t, int a, int b) {
    auto x = split(t, a);
    auto y = split(x.second, b - a);
    toggle(y.first);
    t = merge(x.first, merge(y.first, y.second));
  }

  Ptr update(Ptr t) override {
    if (!t) return t;
    t->cnt = 1;
    t->sum = t->key;
    if (t->l) t->cnt += t->l->cnt, t->sum = f(t->l->sum, t->sum);
    if (t->r) t->cnt += t->r->cnt, t->sum = f(t->sum, t->r->sum);
    return t;
  }

 protected:
  inline T sum(const Ptr t) { return t ? t->sum : T(); }

  void push(Ptr t) override {
    if (!t) return;
    if (t->rev) {
      if (t->l) toggle(t->l);
      if (t->r) toggle(t->r);
      t->rev = false;
    }
  }
};

/**
 * @brief 反転可能平衡二分木(基底クラス)
 */
#line 2 "lct/splay-base.hpp"

template <typename Node>
struct SplayTreeBase {
  using Ptr = Node *;
  template <typename... Args>
  Ptr my_new(const Args &...args) {
    return new Node(args...);
  }
  void my_del(Ptr p) { delete p; }

  bool is_root(Ptr t) { return !(t->p) || (t->p->l != t && t->p->r != t); }

  int size(Ptr t) const { return count(t); }

  virtual void splay(Ptr t) {
    if (!t) return;
    push(t);
    while (!is_root(t)) {
      Ptr q = t->p;
      if (is_root(q)) {
        push(q), push(t);
        rot(t);
      } else {
        Ptr r = q->p;
        push(r), push(q), push(t);
        if (pos(q) == pos(t))
          rot(q), rot(t);
        else
          rot(t), rot(t);
      }
    }
  }

  Ptr get_left(Ptr t) {
    while (t->l) push(t), t = t->l;
    return t;
  }

  Ptr get_right(Ptr t) {
    while (t->r) push(t), t = t->r;
    return t;
  }

  pair<Ptr, Ptr> split(Ptr t, int k) {
    if (!t) return {nullptr, nullptr};
    if (k == 0) return {nullptr, t};
    if (k == count(t)) return {t, nullptr};
    push(t);
    if (k <= count(t->l)) {
      auto x = split(t->l, k);
      t->l = x.second;
      t->p = nullptr;
      if (x.second) x.second->p = t;
      return {x.first, update(t)};
    } else {
      auto x = split(t->r, k - count(t->l) - 1);
      t->r = x.first;
      t->p = nullptr;
      if (x.first) x.first->p = t;
      return {update(t), x.second};
    }
  }

  Ptr merge(Ptr l, Ptr r) {
    if (!l && !r) return nullptr;
    if (!l) return splay(r), r;
    if (!r) return splay(l), l;
    splay(l), splay(r);
    l = get_right(l);
    splay(l);
    l->r = r;
    r->p = l;
    update(l);
    return l;
  }

  using Key = decltype(Node::key);
  Ptr build(const vector<Key> &v) { return build(0, v.size(), v); }
  Ptr build(int l, int r, const vector<Key> &v) {
    if (l == r) return nullptr;
    if (l + 1 == r) return my_new(v[l]);
    return merge(build(l, (l + r) >> 1, v), build((l + r) >> 1, r, v));
  }

  template <typename... Args>
  void insert(Ptr &t, int k, const Args &...args) {
    splay(t);
    auto x = split(t, k);
    t = merge(merge(x.first, my_new(args...)), x.second);
  }

  void erase(Ptr &t, int k) {
    splay(t);
    auto x = split(t, k);
    auto y = split(x.second, 1);
    my_del(y.first);
    t = merge(x.first, y.second);
  }

  virtual Ptr update(Ptr t) = 0;

 protected:
  inline int count(Ptr t) const { return t ? t->cnt : 0; }

  virtual void push(Ptr t) = 0;

  Ptr build(const vector<Ptr> &v) { return build(0, v.size(), v); }

  Ptr build(int l, int r, const vector<Ptr> &v) {
    if (l + 1 >= r) return v[l];
    return merge(build(l, (l + r) >> 1, v), build((l + r) >> 1, r, v));
  }

  inline int pos(Ptr t) {
    if (t->p) {
      if (t->p->l == t) return -1;
      if (t->p->r == t) return 1;
    }
    return 0;
  }

  virtual void rot(Ptr t) {
    Ptr x = t->p, y = x->p;
    if (pos(t) == -1) {
      if ((x->l = t->r)) t->r->p = x;
      t->r = x, x->p = t;
    } else {
      if ((x->r = t->l)) t->l->p = x;
      t->l = x, x->p = t;
    }
    update(x), update(t);
    if ((t->p = y)) {
      if (y->l == x) y->l = t;
      if (y->r == x) y->r = t;
    }
  }
};

/**
 * @brief Splay Tree(base)
 */
#line 5 "lct/link-cut-tree-subtree.hpp"

template <typename T, T (*f)(T, T), T (*finv)(T, T)>
struct LinkCutForSubtreeNode {
  using Node = LinkCutForSubtreeNode;
  using Ptr = LinkCutForSubtreeNode*;
  Ptr l, r, p;
  T key, sum, sub;
  int cnt;
  bool rev;

  LinkCutForSubtreeNode(const T& t = T())
      : l(), r(), p(), key(t), sum(t), sub(T()), cnt(1), rev(false) {}
  void add(Node* other) { sub = f(sub, other->sum); }
  void erase(Node* other) { sub = finv(sub, other->sum); }
  void merge(Node* n1, Node* n2) {
    sum = f(f(n1 ? n1->sum : T(), key), f(sub, n2 ? n2->sum : T()));
  }
};

template <typename T, T (*f)(T, T), T (*finv)(T, T)>
struct SplayTreeForLCSubtree
    : ReversibleBBST<SplayTreeBase<LinkCutForSubtreeNode<T, f, finv>>,
                     LinkCutForSubtreeNode<T, f, finv>, T, nullptr, nullptr> {
  using Node = LinkCutForSubtreeNode<T, f, finv>;
};
//
#line 2 "lct/link-cut-base.hpp"

template <typename Splay>
struct LinkCutBase : Splay {
  using Node = typename Splay::Node;
  using Ptr = Node*;

  virtual Ptr expose(Ptr t) {
    Ptr rp = nullptr;
    for (Ptr cur = t; cur; cur = cur->p) {
      this->splay(cur);
      cur->r = rp;
      this->update(cur);
      rp = cur;
    }
    this->splay(t);
    return rp;
  }

  virtual void link(Ptr u, Ptr v) {
    evert(u);
    expose(v);
    u->p = v;
  }

  void cut(Ptr u, Ptr v) {
    evert(u);
    expose(v);
    assert(u->p == v);
    v->l = u->p = nullptr;
    this->update(v);
  }

  void evert(Ptr t) {
    expose(t);
    this->toggle(t);
    this->push(t);
  }

  Ptr lca(Ptr u, Ptr v) {
    if (get_root(u) != get_root(v)) return nullptr;
    expose(u);
    return expose(v);
  }

  Ptr get_kth(Ptr x, int k) {
    expose(x);
    while (x) {
      this->push(x);
      if (x->r && x->r->sz > k) {
        x = x->r;
      } else {
        if (x->r) k -= x->r->sz;
        if (k == 0) return x;
        k -= 1;
        x = x->l;
      }
    }
    return nullptr;
  }

  Ptr get_root(Ptr x) {
    expose(x);
    while (x->l) this->push(x), x = x->l;
    return x;
  }

  Ptr get_parent(Ptr x) {
    expose(x);
    Ptr p = x->l;
    if(p == nullptr) return nullptr;
    while (true) {
      this->push(p);
      if (p->r == nullptr) return p;
      p = p->r;
    }
    exit(1);
  }

  virtual void set_key(Ptr t, const decltype(Node::key)& key) {
    this->splay(t);
    t->key = key;
    this->update(t);
  }

  virtual decltype(Node::key) get_key(Ptr t) { return t->key; }

  decltype(Node::key) fold(Ptr u, Ptr v) {
    evert(u);
    expose(v);
    return v->sum;
  }
};

/**
 * @brief Link/Cut Tree(base)
 * @docs docs/lct/link-cut-tree.md
 */
#line 32 "lct/link-cut-tree-subtree.hpp"

template <typename T, T (*f)(T, T), T (*finv)(T, T)>
struct LinkCutTreeSubtreeQuery
    : LinkCutBase<SplayTreeForLCSubtree<T, f, finv>> {
  using base = LinkCutBase<SplayTreeForLCSubtree<T, f, finv>>;
  using Node = typename base::Node;
  using Ptr = typename base::Ptr;

  Ptr expose(Ptr t) override {
    Ptr rp = nullptr;
    for (Ptr cur = t; cur; cur = cur->p) {
      this->splay(cur);
      if (cur->r) cur->add(cur->r);
      cur->r = rp;
      if (cur->r) cur->erase(cur->r);
      this->update(cur);
      rp = cur;
    }
    this->splay(t);
    return rp;
  }

  void link(Ptr u, Ptr v) override {
    this->evert(u);
    this->expose(v);
    u->p = v;
    v->add(u);
  }

  void toggle(Ptr t) override {
    if(!t) return;
    swap(t->l, t->r);
    t->rev ^= true;
  }

  Ptr update(Ptr t) override {
    if (!t) return t;
    t->cnt = 1 + this->count(t->l) + this->count(t->r);
    t->merge(t->l, t->r);
    return t;
  }

  void set_key(Ptr t, const T& key) override {
    this->expose(t);
    t->key = key;
    this->update(t);
  }

  T subtree(Ptr t) {
    this->expose(t);
    return f(t->key, t->sub);
  }
};

/**
 * @brief 部分木クエリLink/Cut Tree
 */
#line 8 "verify/verify-yosupo-ds/yosupo-offline-dynamic-connectivity.test.cpp"

using namespace Nyaan;

ll add(ll a, ll b) { return a + b; }
ll sub(ll a, ll b) { return a - b; }

void Nyaan::solve() {
  ini(N, Q);
  vl a(N);
  in(a);
  vl cmd(Q), X(Q), Y(Q);
  rep(i, Q) {
    in(cmd[i], X[i]);
    if (cmd[i] != 3) in(Y[i]);
    if (cmd[i] < 2 and X[i] > Y[i]) swap(X[i], Y[i]);
  }

  using LCT = LinkCutTreeSubtreeQuery<ll, add, sub>;
  LCT lct;
  vector<LCT::Node*> vs(N);
  rep(i, N) vs[i] = new LCT::Node(a[i]);

  OffLineDynamicConnectivity dc(N, Q);
  rep(i, Q) {
    if (cmd[i] == 0) dc.add_edge(i, X[i], Y[i]);
    if (cmd[i] == 1) dc.del_edge(i, X[i], Y[i]);
  }
  dc.build();
  vl ans;
  auto add = [&](int u, int v) { lct.link(vs[u], vs[v]); };
  auto del = [&](int u, int v) { lct.cut(vs[u], vs[v]); };
  auto query = [&](int i) {
    if (cmd[i] == 2) {
      ll k = lct.get_key(vs[X[i]]);
      lct.set_key(vs[X[i]], k + Y[i]);
    } else if (cmd[i] == 3) {
      lct.evert(vs[X[i]]);
      ans.emplace_back(lct.subtree(vs[X[i]]));
    }
  };

  dc.run(add, del, query);
  each(x, ans) out(x);
}
Back to top page