#line 1 "verify/verify-unit-test/primitive-root.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/aplusb"
//
#line 2 "template/template.hpp"
using namespace std;
// intrinstic
#include <immintrin.h>
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
// utility
#line 1 "template/util.hpp"
namespace Nyaan {
using ll = long long;
using i64 = long long;
using u64 = unsigned long long;
using i128 = __int128_t;
using u128 = __uint128_t;
template <typename T>
using V = vector<T>;
template <typename T>
using VV = vector<vector<T>>;
using vi = vector<int>;
using vl = vector<long long>;
using vd = V<double>;
using vs = V<string>;
using vvi = vector<vector<int>>;
using vvl = vector<vector<long long>>;
template <typename T>
using minpq = priority_queue<T, vector<T>, greater<T>>;
template <typename T, typename U>
struct P : pair<T, U> {
template <typename... Args>
P(Args... args) : pair<T, U>(args...) {}
using pair<T, U>::first;
using pair<T, U>::second;
P &operator+=(const P &r) {
first += r.first;
second += r.second;
return *this;
}
P &operator-=(const P &r) {
first -= r.first;
second -= r.second;
return *this;
}
P &operator*=(const P &r) {
first *= r.first;
second *= r.second;
return *this;
}
template <typename S>
P &operator*=(const S &r) {
first *= r, second *= r;
return *this;
}
P operator+(const P &r) const { return P(*this) += r; }
P operator-(const P &r) const { return P(*this) -= r; }
P operator*(const P &r) const { return P(*this) *= r; }
template <typename S>
P operator*(const S &r) const {
return P(*this) *= r;
}
P operator-() const { return P{-first, -second}; }
};
using pl = P<ll, ll>;
using pi = P<int, int>;
using vp = V<pl>;
constexpr int inf = 1001001001;
constexpr long long infLL = 4004004004004004004LL;
template <typename T>
int sz(const T &t) {
return t.size();
}
template <typename T, typename U>
inline bool amin(T &x, U y) {
return (y < x) ? (x = y, true) : false;
}
template <typename T, typename U>
inline bool amax(T &x, U y) {
return (x < y) ? (x = y, true) : false;
}
template <typename T>
inline T Max(const vector<T> &v) {
return *max_element(begin(v), end(v));
}
template <typename T>
inline T Min(const vector<T> &v) {
return *min_element(begin(v), end(v));
}
template <typename T>
inline long long Sum(const vector<T> &v) {
return accumulate(begin(v), end(v), 0LL);
}
template <typename T>
int lb(const vector<T> &v, const T &a) {
return lower_bound(begin(v), end(v), a) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, const T &a) {
return upper_bound(begin(v), end(v), a) - begin(v);
}
constexpr long long TEN(int n) {
long long ret = 1, x = 10;
for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1);
return ret;
}
template <typename T, typename U>
pair<T, U> mkp(const T &t, const U &u) {
return make_pair(t, u);
}
template <typename T>
vector<T> mkrui(const vector<T> &v, bool rev = false) {
vector<T> ret(v.size() + 1);
if (rev) {
for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1];
} else {
for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];
}
return ret;
};
template <typename T>
vector<T> mkuni(const vector<T> &v) {
vector<T> ret(v);
sort(ret.begin(), ret.end());
ret.erase(unique(ret.begin(), ret.end()), ret.end());
return ret;
}
template <typename F>
vector<int> mkord(int N, F f) {
vector<int> ord(N);
iota(begin(ord), end(ord), 0);
sort(begin(ord), end(ord), f);
return ord;
}
template <typename T>
vector<int> mkinv(vector<T> &v) {
int max_val = *max_element(begin(v), end(v));
vector<int> inv(max_val + 1, -1);
for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i;
return inv;
}
vector<int> mkiota(int n) {
vector<int> ret(n);
iota(begin(ret), end(ret), 0);
return ret;
}
template <typename T>
T mkrev(const T &v) {
T w{v};
reverse(begin(w), end(w));
return w;
}
template <typename T>
bool nxp(T &v) {
return next_permutation(begin(v), end(v));
}
// 返り値の型は入力の T に依存
// i 要素目 : [0, a[i])
template <typename T>
vector<vector<T>> product(const vector<T> &a) {
vector<vector<T>> ret;
vector<T> v;
auto dfs = [&](auto rc, int i) -> void {
if (i == (int)a.size()) {
ret.push_back(v);
return;
}
for (int j = 0; j < a[i]; j++) v.push_back(j), rc(rc, i + 1), v.pop_back();
};
dfs(dfs, 0);
return ret;
}
// F : function(void(T&)), mod を取る操作
// T : 整数型のときはオーバーフローに注意する
template <typename T>
T Power(T a, long long n, const T &I, const function<void(T &)> &f) {
T res = I;
for (; n; f(a = a * a), n >>= 1) {
if (n & 1) f(res = res * a);
}
return res;
}
// T : 整数型のときはオーバーフローに注意する
template <typename T>
T Power(T a, long long n, const T &I = T{1}) {
return Power(a, n, I, function<void(T &)>{[](T &) -> void {}});
}
template <typename T>
T Rev(const T &v) {
T res = v;
reverse(begin(res), end(res));
return res;
}
template <typename T>
vector<T> Transpose(const vector<T> &v) {
using U = typename T::value_type;
if(v.empty()) return {};
int H = v.size(), W = v[0].size();
vector res(W, T(H, U{}));
for (int i = 0; i < H; i++) {
for (int j = 0; j < W; j++) {
res[j][i] = v[i][j];
}
}
return res;
}
template <typename T>
vector<T> Rotate(const vector<T> &v, int clockwise = true) {
using U = typename T::value_type;
int H = v.size(), W = v[0].size();
vector res(W, T(H, U{}));
for (int i = 0; i < H; i++) {
for (int j = 0; j < W; j++) {
if (clockwise) {
res[W - 1 - j][i] = v[i][j];
} else {
res[j][H - 1 - i] = v[i][j];
}
}
}
return res;
}
} // namespace Nyaan
#line 58 "template/template.hpp"
// bit operation
#line 1 "template/bitop.hpp"
namespace Nyaan {
__attribute__((target("popcnt"))) inline int popcnt(const u64 &a) {
return __builtin_popcountll(a);
}
inline int lsb(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int ctz(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int msb(const u64 &a) { return a ? 63 - __builtin_clzll(a) : -1; }
template <typename T>
inline int gbit(const T &a, int i) {
return (a >> i) & 1;
}
template <typename T>
inline void sbit(T &a, int i, bool b) {
if (gbit(a, i) != b) a ^= T(1) << i;
}
constexpr long long PW(int n) { return 1LL << n; }
constexpr long long MSK(int n) { return (1LL << n) - 1; }
} // namespace Nyaan
#line 61 "template/template.hpp"
// inout
#line 1 "template/inout.hpp"
namespace Nyaan {
template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
os << p.first << " " << p.second;
return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
is >> p.first >> p.second;
return is;
}
template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
int s = (int)v.size();
for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
for (auto &x : v) is >> x;
return is;
}
istream &operator>>(istream &is, __int128_t &x) {
string S;
is >> S;
x = 0;
int flag = 0;
for (auto &c : S) {
if (c == '-') {
flag = true;
continue;
}
x *= 10;
x += c - '0';
}
if (flag) x = -x;
return is;
}
istream &operator>>(istream &is, __uint128_t &x) {
string S;
is >> S;
x = 0;
for (auto &c : S) {
x *= 10;
x += c - '0';
}
return is;
}
ostream &operator<<(ostream &os, __int128_t x) {
if (x == 0) return os << 0;
if (x < 0) os << '-', x = -x;
string S;
while (x) S.push_back('0' + x % 10), x /= 10;
reverse(begin(S), end(S));
return os << S;
}
ostream &operator<<(ostream &os, __uint128_t x) {
if (x == 0) return os << 0;
string S;
while (x) S.push_back('0' + x % 10), x /= 10;
reverse(begin(S), end(S));
return os << S;
}
void in() {}
template <typename T, class... U>
void in(T &t, U &...u) {
cin >> t;
in(u...);
}
void out() { cout << "\n"; }
template <typename T, class... U, char sep = ' '>
void out(const T &t, const U &...u) {
cout << t;
if (sizeof...(u)) cout << sep;
out(u...);
}
struct IoSetupNya {
IoSetupNya() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(15);
cerr << fixed << setprecision(7);
}
} iosetupnya;
} // namespace Nyaan
#line 64 "template/template.hpp"
// debug
#line 1 "template/debug.hpp"
namespace DebugImpl {
template <typename U, typename = void>
struct is_specialize : false_type {};
template <typename U>
struct is_specialize<
U, typename conditional<false, typename U::iterator, void>::type>
: true_type {};
template <typename U>
struct is_specialize<
U, typename conditional<false, decltype(U::first), void>::type>
: true_type {};
template <typename U>
struct is_specialize<U, enable_if_t<is_integral<U>::value, void>> : true_type {
};
void dump(const char& t) { cerr << t; }
void dump(const string& t) { cerr << t; }
void dump(const bool& t) { cerr << (t ? "true" : "false"); }
void dump(__int128_t t) {
if (t == 0) cerr << 0;
if (t < 0) cerr << '-', t = -t;
string S;
while (t) S.push_back('0' + t % 10), t /= 10;
reverse(begin(S), end(S));
cerr << S;
}
void dump(__uint128_t t) {
if (t == 0) cerr << 0;
string S;
while (t) S.push_back('0' + t % 10), t /= 10;
reverse(begin(S), end(S));
cerr << S;
}
template <typename U,
enable_if_t<!is_specialize<U>::value, nullptr_t> = nullptr>
void dump(const U& t) {
cerr << t;
}
template <typename T>
void dump(const T& t, enable_if_t<is_integral<T>::value>* = nullptr) {
string res;
if (t == Nyaan::inf) res = "inf";
if constexpr (is_signed<T>::value) {
if (t == -Nyaan::inf) res = "-inf";
}
if constexpr (sizeof(T) == 8) {
if (t == Nyaan::infLL) res = "inf";
if constexpr (is_signed<T>::value) {
if (t == -Nyaan::infLL) res = "-inf";
}
}
if (res.empty()) res = to_string(t);
cerr << res;
}
template <typename T, typename U>
void dump(const pair<T, U>&);
template <typename T>
void dump(const pair<T*, int>&);
template <typename T>
void dump(const T& t,
enable_if_t<!is_void<typename T::iterator>::value>* = nullptr) {
cerr << "[ ";
for (auto it = t.begin(); it != t.end();) {
dump(*it);
cerr << (++it == t.end() ? "" : ", ");
}
cerr << " ]";
}
template <typename T, typename U>
void dump(const pair<T, U>& t) {
cerr << "( ";
dump(t.first);
cerr << ", ";
dump(t.second);
cerr << " )";
}
template <typename T>
void dump(const pair<T*, int>& t) {
cerr << "[ ";
for (int i = 0; i < t.second; i++) {
dump(t.first[i]);
cerr << (i == t.second - 1 ? "" : ", ");
}
cerr << " ]";
}
void trace() { cerr << endl; }
template <typename Head, typename... Tail>
void trace(Head&& head, Tail&&... tail) {
cerr << " ";
dump(head);
if (sizeof...(tail) != 0) cerr << ",";
trace(std::forward<Tail>(tail)...);
}
} // namespace DebugImpl
#ifdef NyaanDebug
#define trc(...) \
do { \
cerr << "## " << #__VA_ARGS__ << " = "; \
DebugImpl::trace(__VA_ARGS__); \
} while (0)
#else
#define trc(...) (void(0))
#endif
#ifdef NyaanLocal
#define trc2(...) \
do { \
cerr << "## " << #__VA_ARGS__ << " = "; \
DebugImpl::trace(__VA_ARGS__); \
} while (0)
#else
#define trc2(...) (void(0))
#endif
#line 67 "template/template.hpp"
// macro
#line 1 "template/macro.hpp"
#define each(x, v) for (auto&& x : v)
#define each2(x, y, v) for (auto&& [x, y] : v)
#define all(v) (v).begin(), (v).end()
#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)
#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)
#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)
#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)
#define reg(i, a, b) for (long long i = (a); i < (b); i++)
#define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--)
#define fi first
#define se second
#define ini(...) \
int __VA_ARGS__; \
in(__VA_ARGS__)
#define inl(...) \
long long __VA_ARGS__; \
in(__VA_ARGS__)
#define ins(...) \
string __VA_ARGS__; \
in(__VA_ARGS__)
#define in2(s, t) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i]); \
}
#define in3(s, t, u) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i], u[i]); \
}
#define in4(s, t, u, v) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i], u[i], v[i]); \
}
#define die(...) \
do { \
Nyaan::out(__VA_ARGS__); \
return; \
} while (0)
#line 70 "template/template.hpp"
namespace Nyaan {
void solve();
}
int main() { Nyaan::solve(); }
#line 4 "verify/verify-unit-test/primitive-root.test.cpp"
//
#line 2 "misc/rng.hpp"
#line 2 "internal/internal-seed.hpp"
#line 4 "internal/internal-seed.hpp"
using namespace std;
namespace internal {
unsigned long long non_deterministic_seed() {
unsigned long long m =
chrono::duration_cast<chrono::nanoseconds>(
chrono::high_resolution_clock::now().time_since_epoch())
.count();
m ^= 9845834732710364265uLL;
m ^= m << 24, m ^= m >> 31, m ^= m << 35;
return m;
}
unsigned long long deterministic_seed() { return 88172645463325252UL; }
// 64 bit の seed 値を生成 (手元では seed 固定)
// 連続で呼び出すと同じ値が何度も返ってくるので注意
// #define RANDOMIZED_SEED するとシードがランダムになる
unsigned long long seed() {
#if defined(NyaanLocal) && !defined(RANDOMIZED_SEED)
return deterministic_seed();
#else
return non_deterministic_seed();
#endif
}
} // namespace internal
#line 4 "misc/rng.hpp"
namespace my_rand {
using i64 = long long;
using u64 = unsigned long long;
// [0, 2^64 - 1)
u64 rng() {
static u64 _x = internal::seed();
return _x ^= _x << 7, _x ^= _x >> 9;
}
// [l, r]
i64 rng(i64 l, i64 r) {
assert(l <= r);
return l + rng() % u64(r - l + 1);
}
// [l, r)
i64 randint(i64 l, i64 r) {
assert(l < r);
return l + rng() % u64(r - l);
}
// choose n numbers from [l, r) without overlapping
vector<i64> randset(i64 l, i64 r, i64 n) {
assert(l <= r && n <= r - l);
unordered_set<i64> s;
for (i64 i = n; i; --i) {
i64 m = randint(l, r + 1 - i);
if (s.find(m) != s.end()) m = r - i;
s.insert(m);
}
vector<i64> ret;
for (auto& x : s) ret.push_back(x);
sort(begin(ret), end(ret));
return ret;
}
// [0.0, 1.0)
double rnd() { return rng() * 5.42101086242752217004e-20; }
// [l, r)
double rnd(double l, double r) {
assert(l < r);
return l + rnd() * (r - l);
}
template <typename T>
void randshf(vector<T>& v) {
int n = v.size();
for (int i = 1; i < n; i++) swap(v[i], v[randint(0, i + 1)]);
}
} // namespace my_rand
using my_rand::randint;
using my_rand::randset;
using my_rand::randshf;
using my_rand::rnd;
using my_rand::rng;
#line 6 "verify/verify-unit-test/primitive-root.test.cpp"
//
#line 1 "atcoder/internal_math.hpp"
#line 5 "atcoder/internal_math.hpp"
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
x %= m;
if (x < 0) x += m;
return x;
}
// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
unsigned int _m;
unsigned long long im;
// @param m `1 <= m < 2^31`
barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
// @return m
unsigned int umod() const { return _m; }
// @param a `0 <= a < m`
// @param b `0 <= b < m`
// @return `a * b % m`
unsigned int mul(unsigned int a, unsigned int b) const {
// [1] m = 1
// a = b = im = 0, so okay
// [2] m >= 2
// im = ceil(2^64 / m)
// -> im * m = 2^64 + r (0 <= r < m)
// let z = a*b = c*m + d (0 <= c, d < m)
// a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
// c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
// ((ab * im) >> 64) == c or c + 1
unsigned long long z = a;
z *= b;
#ifdef _MSC_VER
unsigned long long x;
_umul128(z, im, &x);
#else
unsigned long long x =
(unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
unsigned int v = (unsigned int)(z - x * _m);
if (_m <= v) v += _m;
return v;
}
};
// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if (m == 1) return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while (n) {
if (n & 1) r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
if (n <= 1) return false;
if (n == 2 || n == 7 || n == 61) return true;
if (n % 2 == 0) return false;
long long d = n - 1;
while (d % 2 == 0) d /= 2;
constexpr long long bases[3] = {2, 7, 61};
for (long long a : bases) {
long long t = d;
long long y = pow_mod_constexpr(a, t, n);
while (t != n - 1 && y != 1 && y != n - 1) {
y = y * y % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0) {
return false;
}
}
return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);
// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
a = safe_mod(a, b);
if (a == 0) return {b, 0};
// Contracts:
// [1] s - m0 * a = 0 (mod b)
// [2] t - m1 * a = 0 (mod b)
// [3] s * |m1| + t * |m0| <= b
long long s = b, t = a;
long long m0 = 0, m1 = 1;
while (t) {
long long u = s / t;
s -= t * u;
m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b
// [3]:
// (s - t * u) * |m1| + t * |m0 - m1 * u|
// <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
// = s * |m1| + t * |m0| <= b
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
// by [3]: |m0| <= b/g
// by g != b: |m0| < b/g
if (m0 < 0) m0 += b / s;
return {s, m0};
}
// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
if (m == 2) return 1;
if (m == 167772161) return 3;
if (m == 469762049) return 3;
if (m == 754974721) return 11;
if (m == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0) x /= 2;
for (int i = 3; (long long)(i)*i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) {
x /= i;
}
}
}
if (x > 1) {
divs[cnt++] = x;
}
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);
} // namespace internal
} // namespace atcoder
#line 2 "math/constexpr-primitive-root.hpp"
constexpr unsigned int constexpr_primitive_root(unsigned int mod) {
using u32 = unsigned int;
using u64 = unsigned long long;
if(mod == 2) return 1;
u64 m = mod - 1, ds[32] = {}, idx = 0;
for (u64 i = 2; i * i <= m; ++i) {
if (m % i == 0) {
ds[idx++] = i;
while (m % i == 0) m /= i;
}
}
if (m != 1) ds[idx++] = m;
for (u32 _pr = 2, flg = true;; _pr++, flg = true) {
for (u32 i = 0; i < idx && flg; ++i) {
u64 a = _pr, b = (mod - 1) / ds[i], r = 1;
for (; b; a = a * a % mod, b >>= 1)
if (b & 1) r = r * a % mod;
if (r == 1) flg = false;
}
if (flg == true) return _pr;
}
}
#line 2 "math/elementary-function.hpp"
// totient function φ(N)=(1 ~ N , gcd(i,N) = 1)
// {0, 1, 1, 2, 4, 2, 6, 4, ... }
vector<int> EulersTotientFunction(int N) {
vector<int> ret(N + 1, 0);
for (int i = 0; i <= N; i++) ret[i] = i;
for (int i = 2; i <= N; i++) {
if (ret[i] == i)
for (int j = i; j <= N; j += i) ret[j] = ret[j] / i * (i - 1);
}
return ret;
}
// Divisor ex) 12 -> {1, 2, 3, 4, 6, 12}
vector<long long> Divisor(long long N) {
vector<long long> v;
for (long long i = 1; i * i <= N; i++) {
if (N % i == 0) {
v.push_back(i);
if (i * i != N) v.push_back(N / i);
}
}
return v;
}
// Factorization
// ex) 18 -> { (2,1) , (3,2) }
vector<pair<long long, int> > PrimeFactors(long long N) {
vector<pair<long long, int> > ret;
for (long long p = 2; p * p <= N; p++)
if (N % p == 0) {
ret.emplace_back(p, 0);
while (N % p == 0) N /= p, ret.back().second++;
}
if (N >= 2) ret.emplace_back(N, 1);
return ret;
}
// Factorization with Prime Sieve
// ex) 18 -> { (2,1) , (3,2) }
vector<pair<long long, int> > PrimeFactors(long long N,
const vector<long long> &prime) {
vector<pair<long long, int> > ret;
for (auto &p : prime) {
if (p * p > N) break;
if (N % p == 0) {
ret.emplace_back(p, 0);
while (N % p == 0) N /= p, ret.back().second++;
}
}
if (N >= 2) ret.emplace_back(N, 1);
return ret;
}
// modpow for mod < 2 ^ 31
long long modpow(long long a, long long n, long long mod) {
a %= mod;
long long ret = 1;
while (n > 0) {
if (n & 1) ret = ret * a % mod;
a = a * a % mod;
n >>= 1;
}
return ret % mod;
};
// Check if r is Primitive Root
bool isPrimitiveRoot(long long r, long long mod) {
r %= mod;
if (r == 0) return false;
auto pf = PrimeFactors(mod - 1);
for (auto &x : pf) {
if (modpow(r, (mod - 1) / x.first, mod) == 1) return false;
}
return true;
}
// Get Primitive Root
long long PrimitiveRoot(long long mod) {
if(mod == 2) return 1;
long long ret = 1;
while (isPrimitiveRoot(ret, mod) == false) ret++;
return ret;
}
// Euler's phi function
long long phi(long long n) {
auto pf = PrimeFactors(n);
long long ret = n;
for (auto p : pf) {
ret /= p.first;
ret *= (p.first - 1);
}
return ret;
}
// Extended Euclidean algorithm
// solve : ax + by = gcd(a, b)
// return : pair(x, y)
// a>=0,b>=0 でない場合 gcd(a, b) は負にもなり得るので注意
pair<long long, long long> extgcd(long long a, long long b) {
if (b == 0) return make_pair(1, 0);
long long x, y;
tie(y, x) = extgcd(b, a % b);
y -= a / b * x;
return make_pair(x, y);
}
// Check if n is Square Number
// true : return d s.t. d * d == n
// false : return -1
long long SqrtInt(long long n) {
if (n == 0 || n == 1) return n;
long long d = (long long)sqrt(n) - 1;
while (d * d < n) ++d;
return (d * d == n) ? d : -1;
}
// return a number of n's digit
// zero ... return value if n = 0 (default -> 1)
int isDigit(long long n, int zero = 1) {
if (n == 0) return zero;
int ret = 0;
while (n) {
n /= 10;
ret++;
}
return ret;
}
#line 2 "prime/fast-factorize.hpp"
#line 6 "prime/fast-factorize.hpp"
using namespace std;
#line 2 "internal/internal-math.hpp"
#line 2 "internal/internal-type-traits.hpp"
#line 4 "internal/internal-type-traits.hpp"
using namespace std;
namespace internal {
template <typename T>
using is_broadly_integral =
typename conditional_t<is_integral_v<T> || is_same_v<T, __int128_t> ||
is_same_v<T, __uint128_t>,
true_type, false_type>::type;
template <typename T>
using is_broadly_signed =
typename conditional_t<is_signed_v<T> || is_same_v<T, __int128_t>,
true_type, false_type>::type;
template <typename T>
using is_broadly_unsigned =
typename conditional_t<is_unsigned_v<T> || is_same_v<T, __uint128_t>,
true_type, false_type>::type;
#define ENABLE_VALUE(x) \
template <typename T> \
constexpr bool x##_v = x<T>::value;
ENABLE_VALUE(is_broadly_integral);
ENABLE_VALUE(is_broadly_signed);
ENABLE_VALUE(is_broadly_unsigned);
#undef ENABLE_VALUE
#define ENABLE_HAS_TYPE(var) \
template <class, class = void> \
struct has_##var : false_type {}; \
template <class T> \
struct has_##var<T, void_t<typename T::var>> : true_type {}; \
template <class T> \
constexpr auto has_##var##_v = has_##var<T>::value;
#define ENABLE_HAS_VAR(var) \
template <class, class = void> \
struct has_##var : false_type {}; \
template <class T> \
struct has_##var<T, void_t<decltype(T::var)>> : true_type {}; \
template <class T> \
constexpr auto has_##var##_v = has_##var<T>::value;
} // namespace internal
#line 4 "internal/internal-math.hpp"
namespace internal {
#line 10 "internal/internal-math.hpp"
using namespace std;
// a mod p
template <typename T>
T safe_mod(T a, T p) {
a %= p;
if constexpr (is_broadly_signed_v<T>) {
if (a < 0) a += p;
}
return a;
}
// 返り値:pair(g, x)
// s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
template <typename T>
pair<T, T> inv_gcd(T a, T p) {
static_assert(is_broadly_signed_v<T>);
a = safe_mod(a, p);
if (a == 0) return {p, 0};
T b = p, x = 1, y = 0;
while (a != 0) {
T q = b / a;
swap(a, b %= a);
swap(x, y -= q * x);
}
if (y < 0) y += p / b;
return {b, y};
}
// 返り値 : a^{-1} mod p
// gcd(a, p) != 1 が必要
template <typename T>
T inv(T a, T p) {
static_assert(is_broadly_signed_v<T>);
a = safe_mod(a, p);
T b = p, x = 1, y = 0;
while (a != 0) {
T q = b / a;
swap(a, b %= a);
swap(x, y -= q * x);
}
assert(b == 1);
return y < 0 ? y + p : y;
}
// T : 底の型
// U : T*T がオーバーフローしない かつ 指数の型
template <typename T, typename U>
T modpow(T a, U n, T p) {
a = safe_mod(a, p);
T ret = 1 % p;
while (n != 0) {
if (n % 2 == 1) ret = U(ret) * a % p;
a = U(a) * a % p;
n /= 2;
}
return ret;
}
// 返り値 : pair(rem, mod)
// 解なしのときは {0, 0} を返す
template <typename T>
pair<T, T> crt(const vector<T>& r, const vector<T>& m) {
static_assert(is_broadly_signed_v<T>);
assert(r.size() == m.size());
int n = int(r.size());
T r0 = 0, m0 = 1;
for (int i = 0; i < n; i++) {
assert(1 <= m[i]);
T r1 = safe_mod(r[i], m[i]), m1 = m[i];
if (m0 < m1) swap(r0, r1), swap(m0, m1);
if (m0 % m1 == 0) {
if (r0 % m1 != r1) return {0, 0};
continue;
}
auto [g, im] = inv_gcd(m0, m1);
T u1 = m1 / g;
if ((r1 - r0) % g) return {0, 0};
T x = (r1 - r0) / g % u1 * im % u1;
r0 += x * m0;
m0 *= u1;
if (r0 < 0) r0 += m0;
}
return {r0, m0};
}
} // namespace internal
#line 2 "modint/arbitrary-montgomery-modint.hpp"
#line 4 "modint/arbitrary-montgomery-modint.hpp"
using namespace std;
template <typename Int, typename UInt, typename Long, typename ULong, int id>
struct ArbitraryLazyMontgomeryModIntBase {
using mint = ArbitraryLazyMontgomeryModIntBase;
inline static UInt mod;
inline static UInt r;
inline static UInt n2;
static constexpr int bit_length = sizeof(UInt) * 8;
static UInt get_r() {
UInt ret = mod;
while (mod * ret != 1) ret *= UInt(2) - mod * ret;
return ret;
}
static void set_mod(UInt m) {
assert(m < (UInt(1u) << (bit_length - 2)));
assert((m & 1) == 1);
mod = m, n2 = -ULong(m) % m, r = get_r();
}
UInt a;
ArbitraryLazyMontgomeryModIntBase() : a(0) {}
ArbitraryLazyMontgomeryModIntBase(const Long &b)
: a(reduce(ULong(b % mod + mod) * n2)){};
static UInt reduce(const ULong &b) {
return (b + ULong(UInt(b) * UInt(-r)) * mod) >> bit_length;
}
mint &operator+=(const mint &b) {
if (Int(a += b.a - 2 * mod) < 0) a += 2 * mod;
return *this;
}
mint &operator-=(const mint &b) {
if (Int(a -= b.a) < 0) a += 2 * mod;
return *this;
}
mint &operator*=(const mint &b) {
a = reduce(ULong(a) * b.a);
return *this;
}
mint &operator/=(const mint &b) {
*this *= b.inverse();
return *this;
}
mint operator+(const mint &b) const { return mint(*this) += b; }
mint operator-(const mint &b) const { return mint(*this) -= b; }
mint operator*(const mint &b) const { return mint(*this) *= b; }
mint operator/(const mint &b) const { return mint(*this) /= b; }
bool operator==(const mint &b) const {
return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
}
bool operator!=(const mint &b) const {
return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
}
mint operator-() const { return mint(0) - mint(*this); }
mint operator+() const { return mint(*this); }
mint pow(ULong n) const {
mint ret(1), mul(*this);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul, n >>= 1;
}
return ret;
}
friend ostream &operator<<(ostream &os, const mint &b) {
return os << b.get();
}
friend istream &operator>>(istream &is, mint &b) {
Long t;
is >> t;
b = ArbitraryLazyMontgomeryModIntBase(t);
return (is);
}
mint inverse() const {
Int x = get(), y = get_mod(), u = 1, v = 0;
while (y > 0) {
Int t = x / y;
swap(x -= t * y, y);
swap(u -= t * v, v);
}
return mint{u};
}
UInt get() const {
UInt ret = reduce(a);
return ret >= mod ? ret - mod : ret;
}
static UInt get_mod() { return mod; }
};
// id に適当な乱数を割り当てて使う
template <int id>
using ArbitraryLazyMontgomeryModInt =
ArbitraryLazyMontgomeryModIntBase<int, unsigned int, long long,
unsigned long long, id>;
template <int id>
using ArbitraryLazyMontgomeryModInt64bit =
ArbitraryLazyMontgomeryModIntBase<long long, unsigned long long, __int128_t,
__uint128_t, id>;
#line 2 "prime/miller-rabin.hpp"
#line 4 "prime/miller-rabin.hpp"
using namespace std;
#line 8 "prime/miller-rabin.hpp"
namespace fast_factorize {
template <typename T, typename U>
bool miller_rabin(const T& n, vector<T> ws) {
if (n <= 2) return n == 2;
if (n % 2 == 0) return false;
T d = n - 1;
while (d % 2 == 0) d /= 2;
U e = 1, rev = n - 1;
for (T w : ws) {
if (w % n == 0) continue;
T t = d;
U y = internal::modpow<T, U>(w, t, n);
while (t != n - 1 && y != e && y != rev) y = y * y % n, t *= 2;
if (y != rev && t % 2 == 0) return false;
}
return true;
}
bool miller_rabin_u64(unsigned long long n) {
return miller_rabin<unsigned long long, __uint128_t>(
n, {2, 325, 9375, 28178, 450775, 9780504, 1795265022});
}
template <typename mint>
bool miller_rabin(unsigned long long n, vector<unsigned long long> ws) {
if (n <= 2) return n == 2;
if (n % 2 == 0) return false;
if (mint::get_mod() != n) mint::set_mod(n);
unsigned long long d = n - 1;
while (~d & 1) d >>= 1;
mint e = 1, rev = n - 1;
for (unsigned long long w : ws) {
if (w % n == 0) continue;
unsigned long long t = d;
mint y = mint(w).pow(t);
while (t != n - 1 && y != e && y != rev) y *= y, t *= 2;
if (y != rev && t % 2 == 0) return false;
}
return true;
}
bool is_prime(unsigned long long n) {
using mint32 = ArbitraryLazyMontgomeryModInt<96229631>;
using mint64 = ArbitraryLazyMontgomeryModInt64bit<622196072>;
if (n <= 2) return n == 2;
if (n % 2 == 0) return false;
if (n < (1uLL << 30)) {
return miller_rabin<mint32>(n, {2, 7, 61});
} else if (n < (1uLL << 62)) {
return miller_rabin<mint64>(
n, {2, 325, 9375, 28178, 450775, 9780504, 1795265022});
} else {
return miller_rabin_u64(n);
}
}
} // namespace fast_factorize
using fast_factorize::is_prime;
/**
* @brief Miller-Rabin primality test
*/
#line 12 "prime/fast-factorize.hpp"
namespace fast_factorize {
using u64 = uint64_t;
template <typename mint, typename T>
T pollard_rho(T n) {
if (~n & 1) return 2;
if (is_prime(n)) return n;
if (mint::get_mod() != n) mint::set_mod(n);
mint R, one = 1;
auto f = [&](mint x) { return x * x + R; };
auto rnd_ = [&]() { return rng() % (n - 2) + 2; };
while (1) {
mint x, y, ys, q = one;
R = rnd_(), y = rnd_();
T g = 1;
constexpr int m = 128;
for (int r = 1; g == 1; r <<= 1) {
x = y;
for (int i = 0; i < r; ++i) y = f(y);
for (int k = 0; g == 1 && k < r; k += m) {
ys = y;
for (int i = 0; i < m && i < r - k; ++i) q *= x - (y = f(y));
g = gcd(q.get(), n);
}
}
if (g == n) do
g = gcd((x - (ys = f(ys))).get(), n);
while (g == 1);
if (g != n) return g;
}
exit(1);
}
using i64 = long long;
vector<i64> inner_factorize(u64 n) {
using mint32 = ArbitraryLazyMontgomeryModInt<452288976>;
using mint64 = ArbitraryLazyMontgomeryModInt64bit<401243123>;
if (n <= 1) return {};
u64 p;
if (n <= (1LL << 30)) {
p = pollard_rho<mint32, uint32_t>(n);
} else if (n <= (1LL << 62)) {
p = pollard_rho<mint64, uint64_t>(n);
} else {
exit(1);
}
if (p == n) return {i64(p)};
auto l = inner_factorize(p);
auto r = inner_factorize(n / p);
copy(begin(r), end(r), back_inserter(l));
return l;
}
vector<i64> factorize(u64 n) {
auto ret = inner_factorize(n);
sort(begin(ret), end(ret));
return ret;
}
map<i64, i64> factor_count(u64 n) {
map<i64, i64> mp;
for (auto &x : factorize(n)) mp[x]++;
return mp;
}
vector<i64> divisors(u64 n) {
if (n == 0) return {};
vector<pair<i64, i64>> v;
for (auto &p : factorize(n)) {
if (v.empty() || v.back().first != p) {
v.emplace_back(p, 1);
} else {
v.back().second++;
}
}
vector<i64> ret;
auto f = [&](auto rc, int i, i64 x) -> void {
if (i == (int)v.size()) {
ret.push_back(x);
return;
}
rc(rc, i + 1, x);
for (int j = 0; j < v[i].second; j++) rc(rc, i + 1, x *= v[i].first);
};
f(f, 0, 1);
sort(begin(ret), end(ret));
return ret;
}
} // namespace fast_factorize
using fast_factorize::divisors;
using fast_factorize::factor_count;
using fast_factorize::factorize;
/**
* @brief 高速素因数分解(Miller Rabin/Pollard's Rho)
* @docs docs/prime/fast-factorize.md
*/
#line 2 "prime/prime-enumerate.hpp"
// Prime Sieve {2, 3, 5, 7, 11, 13, 17, ...}
vector<int> prime_enumerate(int N) {
vector<bool> sieve(N / 3 + 1, 1);
for (int p = 5, d = 4, i = 1, sqn = sqrt(N); p <= sqn; p += d = 6 - d, i++) {
if (!sieve[i]) continue;
for (int q = p * p / 3, r = d * p / 3 + (d * p % 3 == 2), s = 2 * p,
qe = sieve.size();
q < qe; q += r = s - r)
sieve[q] = 0;
}
vector<int> ret{2, 3};
for (int p = 5, d = 4, i = 1; p <= N; p += d = 6 - d, i++)
if (sieve[i]) ret.push_back(p);
while (!ret.empty() && ret.back() > N) ret.pop_back();
return ret;
}
#line 12 "verify/verify-unit-test/primitive-root.test.cpp"
using namespace Nyaan;
void test(unsigned int mod) {
int pr1 = atcoder::internal::primitive_root_constexpr(mod);
int pr2 = constexpr_primitive_root(mod);
int pr3 = PrimitiveRoot(mod);
if (pr1 != pr2 or pr2 != pr3) {
cerr << pr1 << " " << pr2 << " " << pr3 << endl;
}
}
void Nyaan::solve() {
auto ps = prime_enumerate(20000);
each(p, ps) test(p);
vi rem{1, 7, 11, 13, 17, 19, 23, 29};
rep(loop, 10000) {
int x = -1;
do {
x = rem[rng() & 7] + rng() & MSK(26);
} while (!is_prime(x));
test(x);
}
cerr << "ok" << endl;
int a, b;
cin >> a >> b;
cout << a + b << endl;
}