Nyaan's Library

This documentation is automatically generated by online-judge-tools/verification-helper

View on GitHub

:heavy_check_mark: verify/verify-unit-test/garner-bigint.test.cpp

Depends on

Code

#define PROBLEM "https://judge.yosupo.jp/problem/aplusb"
//
#include "../../template/template.hpp"
//
#include "../../math/bigint-garner.hpp"
//
#include "../../modint/arbitrary-modint.hpp"
//
#include "../../prime/fast-factorize.hpp"
#include "../../prime/prime-enumerate.hpp"
//
#include "../../misc/all.hpp"

using namespace Nyaan;
using mint = ArbitraryModInt;

// n^e
bigint pow1(ll n, int e) {
  assert(1 <= n);
  if (e == 0) return 1;
  bigint half = pow1(n, e / 2);
  bigint res = half * half;
  if (e & 1) res *= n;
  return res;
}
bigint pow2(ll n, int e) {
  assert(1 <= n);
  int pnum = int(log10(n) * double(e) / 8.8) + 2;
  vector<int> ps, as;
  for (int p = 1000000007; sz(ps) < pnum; p += 2) {
    if (is_prime(p)) ps.push_back(p);
  }
  for (auto& p : ps) {
    mint::set_mod(p);
    as.push_back(mint{n}.pow(e).get());
  }
  auto ans1 = GarnerImpl::garner_naive(as, ps).first;
  auto ans2 = GarnerImpl::garner_dc(as, ps).first;
  assert(ans1 == ans2);
  return ans1;
}

void Nyaan::solve() {
  {
    auto ps = prime_enumerate(1000);
    for (int n = 1; n <= sz(ps); n++) {
      vector<int> rem, mod;
      for (int i = 0; i < n; i++) {
        rem.push_back(rng(0, ps[i] - 1));
        mod.push_back(ps[i]);
      }
      trc(rem, mod);
      auto ans1 = GarnerImpl::garner_naive(rem, mod);
      trc(ans1);
      auto ans2 = GarnerImpl::garner_dc(rem, mod);
      trc(ans2);
      if (ans1 != ans2) exit(1);
    }
  }
  rep1(n, 100) rep(e, 100) {
    bigint ans1 = pow1(n, e);
    bigint ans2 = pow2(n, e);
    if (ans1 != ans2) {
      trc(n, e, ans1, ans2);
    }
    assert(ans1 == ans2);
  }

  /**
  {
    int nmax = 1 << 15;
    vector<int> ps;
    for (int p = TEN(9); sz(ps) < nmax; p--) {
      if (is_prime(p)) ps.push_back(p);
    }
    for (int n = 1; n <= nmax; n *= 2) {
      vector<int> rem, mod;
      for (int i = 0; i < n; i++) {
        rem.push_back(rng(0, ps[i] - 1));
        mod.push_back(ps[i]);
      }
      trc(rem, mod);
      Timer timer;

      timer.reset();
      auto ans1 = GarnerImpl::garner_naive(rem, mod);
      int t1 = timer.elapsed();

      timer.reset();
      auto ans2 = GarnerImpl::garner_dc(rem, mod);
      int t2 = timer.elapsed();

      if (ans1 != ans2) exit(1);
      cerr << "n : " << n << ", ";
      cerr << "naive : " << t1 << " ms , ";
      cerr << "dc : " << t2 << " ms" << endl;
    }
  }
  //*/
  cerr << "OK" << endl;

  int a, b;
  cin >> a >> b;
  cout << a + b << endl;
}
#line 1 "verify/verify-unit-test/garner-bigint.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/aplusb"
//
#line 2 "template/template.hpp"
using namespace std;

// intrinstic
#include <immintrin.h>

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

// utility
#line 1 "template/util.hpp"
namespace Nyaan {
using ll = long long;
using i64 = long long;
using u64 = unsigned long long;
using i128 = __int128_t;
using u128 = __uint128_t;

template <typename T>
using V = vector<T>;
template <typename T>
using VV = vector<vector<T>>;
using vi = vector<int>;
using vl = vector<long long>;
using vd = V<double>;
using vs = V<string>;
using vvi = vector<vector<int>>;
using vvl = vector<vector<long long>>;
template <typename T>
using minpq = priority_queue<T, vector<T>, greater<T>>;

template <typename T, typename U>
struct P : pair<T, U> {
  template <typename... Args>
  P(Args... args) : pair<T, U>(args...) {}

  using pair<T, U>::first;
  using pair<T, U>::second;

  P &operator+=(const P &r) {
    first += r.first;
    second += r.second;
    return *this;
  }
  P &operator-=(const P &r) {
    first -= r.first;
    second -= r.second;
    return *this;
  }
  P &operator*=(const P &r) {
    first *= r.first;
    second *= r.second;
    return *this;
  }
  template <typename S>
  P &operator*=(const S &r) {
    first *= r, second *= r;
    return *this;
  }
  P operator+(const P &r) const { return P(*this) += r; }
  P operator-(const P &r) const { return P(*this) -= r; }
  P operator*(const P &r) const { return P(*this) *= r; }
  template <typename S>
  P operator*(const S &r) const {
    return P(*this) *= r;
  }
  P operator-() const { return P{-first, -second}; }
};

using pl = P<ll, ll>;
using pi = P<int, int>;
using vp = V<pl>;

constexpr int inf = 1001001001;
constexpr long long infLL = 4004004004004004004LL;

template <typename T>
int sz(const T &t) {
  return t.size();
}

template <typename T, typename U>
inline bool amin(T &x, U y) {
  return (y < x) ? (x = y, true) : false;
}
template <typename T, typename U>
inline bool amax(T &x, U y) {
  return (x < y) ? (x = y, true) : false;
}

template <typename T>
inline T Max(const vector<T> &v) {
  return *max_element(begin(v), end(v));
}
template <typename T>
inline T Min(const vector<T> &v) {
  return *min_element(begin(v), end(v));
}
template <typename T>
inline long long Sum(const vector<T> &v) {
  return accumulate(begin(v), end(v), 0LL);
}

template <typename T>
int lb(const vector<T> &v, const T &a) {
  return lower_bound(begin(v), end(v), a) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, const T &a) {
  return upper_bound(begin(v), end(v), a) - begin(v);
}

constexpr long long TEN(int n) {
  long long ret = 1, x = 10;
  for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1);
  return ret;
}

template <typename T, typename U>
pair<T, U> mkp(const T &t, const U &u) {
  return make_pair(t, u);
}

template <typename T>
vector<T> mkrui(const vector<T> &v, bool rev = false) {
  vector<T> ret(v.size() + 1);
  if (rev) {
    for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1];
  } else {
    for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];
  }
  return ret;
};

template <typename T>
vector<T> mkuni(const vector<T> &v) {
  vector<T> ret(v);
  sort(ret.begin(), ret.end());
  ret.erase(unique(ret.begin(), ret.end()), ret.end());
  return ret;
}

template <typename F>
vector<int> mkord(int N, F f) {
  vector<int> ord(N);
  iota(begin(ord), end(ord), 0);
  sort(begin(ord), end(ord), f);
  return ord;
}

template <typename T>
vector<int> mkinv(vector<T> &v) {
  int max_val = *max_element(begin(v), end(v));
  vector<int> inv(max_val + 1, -1);
  for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i;
  return inv;
}

vector<int> mkiota(int n) {
  vector<int> ret(n);
  iota(begin(ret), end(ret), 0);
  return ret;
}

template <typename T>
T mkrev(const T &v) {
  T w{v};
  reverse(begin(w), end(w));
  return w;
}

template <typename T>
bool nxp(vector<T> &v) {
  return next_permutation(begin(v), end(v));
}

// 返り値の型は入力の T に依存
// i 要素目 : [0, a[i])
template <typename T>
vector<vector<T>> product(const vector<T> &a) {
  vector<vector<T>> ret;
  vector<T> v;
  auto dfs = [&](auto rc, int i) -> void {
    if (i == (int)a.size()) {
      ret.push_back(v);
      return;
    }
    for (int j = 0; j < a[i]; j++) v.push_back(j), rc(rc, i + 1), v.pop_back();
  };
  dfs(dfs, 0);
  return ret;
}

// F : function(void(T&)), mod を取る操作
// T : 整数型のときはオーバーフローに注意する
template <typename T>
T Power(T a, long long n, const T &I, const function<void(T &)> &f) {
  T res = I;
  for (; n; f(a = a * a), n >>= 1) {
    if (n & 1) f(res = res * a);
  }
  return res;
}
// T : 整数型のときはオーバーフローに注意する
template <typename T>
T Power(T a, long long n, const T &I) {
  return Power(a, n, I, function<void(T &)>{[](T &) -> void {}});
}

}  // namespace Nyaan
#line 58 "template/template.hpp"

// bit operation
#line 1 "template/bitop.hpp"
namespace Nyaan {
__attribute__((target("popcnt"))) inline int popcnt(const u64 &a) {
  return _mm_popcnt_u64(a);
}
inline int lsb(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int ctz(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int msb(const u64 &a) { return a ? 63 - __builtin_clzll(a) : -1; }
template <typename T>
inline int gbit(const T &a, int i) {
  return (a >> i) & 1;
}
template <typename T>
inline void sbit(T &a, int i, bool b) {
  if (gbit(a, i) != b) a ^= T(1) << i;
}
constexpr long long PW(int n) { return 1LL << n; }
constexpr long long MSK(int n) { return (1LL << n) - 1; }
}  // namespace Nyaan
#line 61 "template/template.hpp"

// inout
#line 1 "template/inout.hpp"
namespace Nyaan {

template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
  os << p.first << " " << p.second;
  return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
  is >> p.first >> p.second;
  return is;
}

template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
  int s = (int)v.size();
  for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
  return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
  for (auto &x : v) is >> x;
  return is;
}

istream &operator>>(istream &is, __int128_t &x) {
  string S;
  is >> S;
  x = 0;
  int flag = 0;
  for (auto &c : S) {
    if (c == '-') {
      flag = true;
      continue;
    }
    x *= 10;
    x += c - '0';
  }
  if (flag) x = -x;
  return is;
}

istream &operator>>(istream &is, __uint128_t &x) {
  string S;
  is >> S;
  x = 0;
  for (auto &c : S) {
    x *= 10;
    x += c - '0';
  }
  return is;
}

ostream &operator<<(ostream &os, __int128_t x) {
  if (x == 0) return os << 0;
  if (x < 0) os << '-', x = -x;
  string S;
  while (x) S.push_back('0' + x % 10), x /= 10;
  reverse(begin(S), end(S));
  return os << S;
}
ostream &operator<<(ostream &os, __uint128_t x) {
  if (x == 0) return os << 0;
  string S;
  while (x) S.push_back('0' + x % 10), x /= 10;
  reverse(begin(S), end(S));
  return os << S;
}

void in() {}
template <typename T, class... U>
void in(T &t, U &...u) {
  cin >> t;
  in(u...);
}

void out() { cout << "\n"; }
template <typename T, class... U, char sep = ' '>
void out(const T &t, const U &...u) {
  cout << t;
  if (sizeof...(u)) cout << sep;
  out(u...);
}

struct IoSetupNya {
  IoSetupNya() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    cout << fixed << setprecision(15);
    cerr << fixed << setprecision(7);
  }
} iosetupnya;

}  // namespace Nyaan
#line 64 "template/template.hpp"

// debug
#line 1 "template/debug.hpp"
namespace DebugImpl {

template <typename U, typename = void>
struct is_specialize : false_type {};
template <typename U>
struct is_specialize<
    U, typename conditional<false, typename U::iterator, void>::type>
    : true_type {};
template <typename U>
struct is_specialize<
    U, typename conditional<false, decltype(U::first), void>::type>
    : true_type {};
template <typename U>
struct is_specialize<U, enable_if_t<is_integral<U>::value, void>> : true_type {
};

void dump(const char& t) { cerr << t; }

void dump(const string& t) { cerr << t; }

void dump(const bool& t) { cerr << (t ? "true" : "false"); }

void dump(__int128_t t) {
  if (t == 0) cerr << 0;
  if (t < 0) cerr << '-', t = -t;
  string S;
  while (t) S.push_back('0' + t % 10), t /= 10;
  reverse(begin(S), end(S));
  cerr << S;
}

void dump(__uint128_t t) {
  if (t == 0) cerr << 0;
  string S;
  while (t) S.push_back('0' + t % 10), t /= 10;
  reverse(begin(S), end(S));
  cerr << S;
}

template <typename U,
          enable_if_t<!is_specialize<U>::value, nullptr_t> = nullptr>
void dump(const U& t) {
  cerr << t;
}

template <typename T>
void dump(const T& t, enable_if_t<is_integral<T>::value>* = nullptr) {
  string res;
  if (t == Nyaan::inf) res = "inf";
  if constexpr (is_signed<T>::value) {
    if (t == -Nyaan::inf) res = "-inf";
  }
  if constexpr (sizeof(T) == 8) {
    if (t == Nyaan::infLL) res = "inf";
    if constexpr (is_signed<T>::value) {
      if (t == -Nyaan::infLL) res = "-inf";
    }
  }
  if (res.empty()) res = to_string(t);
  cerr << res;
}

template <typename T, typename U>
void dump(const pair<T, U>&);
template <typename T>
void dump(const pair<T*, int>&);

template <typename T>
void dump(const T& t,
          enable_if_t<!is_void<typename T::iterator>::value>* = nullptr) {
  cerr << "[ ";
  for (auto it = t.begin(); it != t.end();) {
    dump(*it);
    cerr << (++it == t.end() ? "" : ", ");
  }
  cerr << " ]";
}

template <typename T, typename U>
void dump(const pair<T, U>& t) {
  cerr << "( ";
  dump(t.first);
  cerr << ", ";
  dump(t.second);
  cerr << " )";
}

template <typename T>
void dump(const pair<T*, int>& t) {
  cerr << "[ ";
  for (int i = 0; i < t.second; i++) {
    dump(t.first[i]);
    cerr << (i == t.second - 1 ? "" : ", ");
  }
  cerr << " ]";
}

void trace() { cerr << endl; }
template <typename Head, typename... Tail>
void trace(Head&& head, Tail&&... tail) {
  cerr << " ";
  dump(head);
  if (sizeof...(tail) != 0) cerr << ",";
  trace(forward<Tail>(tail)...);
}

}  // namespace DebugImpl

#ifdef NyaanDebug
#define trc(...)                            \
  do {                                      \
    cerr << "## " << #__VA_ARGS__ << " = "; \
    DebugImpl::trace(__VA_ARGS__);          \
  } while (0)
#else
#define trc(...) (void(0))
#endif

#ifdef NyaanLocal
#define trc2(...)                           \
  do {                                      \
    cerr << "## " << #__VA_ARGS__ << " = "; \
    DebugImpl::trace(__VA_ARGS__);          \
  } while (0)
#else
#define trc2(...) (void(0))
#endif
#line 67 "template/template.hpp"

// macro
#line 1 "template/macro.hpp"
#define each(x, v) for (auto&& x : v)
#define each2(x, y, v) for (auto&& [x, y] : v)
#define all(v) (v).begin(), (v).end()
#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)
#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)
#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)
#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)
#define reg(i, a, b) for (long long i = (a); i < (b); i++)
#define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--)
#define fi first
#define se second
#define ini(...)   \
  int __VA_ARGS__; \
  in(__VA_ARGS__)
#define inl(...)         \
  long long __VA_ARGS__; \
  in(__VA_ARGS__)
#define ins(...)      \
  string __VA_ARGS__; \
  in(__VA_ARGS__)
#define in2(s, t)                           \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i]);                         \
  }
#define in3(s, t, u)                        \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i]);                   \
  }
#define in4(s, t, u, v)                     \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i], v[i]);             \
  }
#define die(...)             \
  do {                       \
    Nyaan::out(__VA_ARGS__); \
    return;                  \
  } while (0)
#line 70 "template/template.hpp"

namespace Nyaan {
void solve();
}
int main() { Nyaan::solve(); }
#line 4 "verify/verify-unit-test/garner-bigint.test.cpp"
//
#line 1 "math/bigint-garner.hpp"

#line 2 "math/bigint.hpp"

#line 10 "math/bigint.hpp"
using namespace std;

#line 2 "internal/internal-type-traits.hpp"

#line 4 "internal/internal-type-traits.hpp"
using namespace std;

namespace internal {
template <typename T>
using is_broadly_integral =
    typename conditional_t<is_integral_v<T> || is_same_v<T, __int128_t> ||
                               is_same_v<T, __uint128_t>,
                           true_type, false_type>::type;

template <typename T>
using is_broadly_signed =
    typename conditional_t<is_signed_v<T> || is_same_v<T, __int128_t>,
                           true_type, false_type>::type;

template <typename T>
using is_broadly_unsigned =
    typename conditional_t<is_unsigned_v<T> || is_same_v<T, __uint128_t>,
                           true_type, false_type>::type;

#define ENABLE_VALUE(x) \
  template <typename T> \
  constexpr bool x##_v = x<T>::value;

ENABLE_VALUE(is_broadly_integral);
ENABLE_VALUE(is_broadly_signed);
ENABLE_VALUE(is_broadly_unsigned);
#undef ENABLE_VALUE

#define ENABLE_HAS_TYPE(var)                                   \
  template <class, class = void>                               \
  struct has_##var : false_type {};                            \
  template <class T>                                           \
  struct has_##var<T, void_t<typename T::var>> : true_type {}; \
  template <class T>                                           \
  constexpr auto has_##var##_v = has_##var<T>::value;

#define ENABLE_HAS_VAR(var)                                     \
  template <class, class = void>                                \
  struct has_##var : false_type {};                             \
  template <class T>                                            \
  struct has_##var<T, void_t<decltype(T::var)>> : true_type {}; \
  template <class T>                                            \
  constexpr auto has_##var##_v = has_##var<T>::value;

}  // namespace internal
#line 2 "ntt/arbitrary-ntt.hpp"

#line 2 "modint/montgomery-modint.hpp"

template <uint32_t mod>
struct LazyMontgomeryModInt {
  using mint = LazyMontgomeryModInt;
  using i32 = int32_t;
  using u32 = uint32_t;
  using u64 = uint64_t;

  static constexpr u32 get_r() {
    u32 ret = mod;
    for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret;
    return ret;
  }

  static constexpr u32 r = get_r();
  static constexpr u32 n2 = -u64(mod) % mod;
  static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30");
  static_assert((mod & 1) == 1, "invalid, mod % 2 == 0");
  static_assert(r * mod == 1, "this code has bugs.");

  u32 a;

  constexpr LazyMontgomeryModInt() : a(0) {}
  constexpr LazyMontgomeryModInt(const int64_t &b)
      : a(reduce(u64(b % mod + mod) * n2)){};

  static constexpr u32 reduce(const u64 &b) {
    return (b + u64(u32(b) * u32(-r)) * mod) >> 32;
  }

  constexpr mint &operator+=(const mint &b) {
    if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod;
    return *this;
  }

  constexpr mint &operator-=(const mint &b) {
    if (i32(a -= b.a) < 0) a += 2 * mod;
    return *this;
  }

  constexpr mint &operator*=(const mint &b) {
    a = reduce(u64(a) * b.a);
    return *this;
  }

  constexpr mint &operator/=(const mint &b) {
    *this *= b.inverse();
    return *this;
  }

  constexpr mint operator+(const mint &b) const { return mint(*this) += b; }
  constexpr mint operator-(const mint &b) const { return mint(*this) -= b; }
  constexpr mint operator*(const mint &b) const { return mint(*this) *= b; }
  constexpr mint operator/(const mint &b) const { return mint(*this) /= b; }
  constexpr bool operator==(const mint &b) const {
    return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
  }
  constexpr bool operator!=(const mint &b) const {
    return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
  }
  constexpr mint operator-() const { return mint() - mint(*this); }
  constexpr mint operator+() const { return mint(*this); }

  constexpr mint pow(u64 n) const {
    mint ret(1), mul(*this);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }

  constexpr mint inverse() const {
    int x = get(), y = mod, u = 1, v = 0, t = 0, tmp = 0;
    while (y > 0) {
      t = x / y;
      x -= t * y, u -= t * v;
      tmp = x, x = y, y = tmp;
      tmp = u, u = v, v = tmp;
    }
    return mint{u};
  }

  friend ostream &operator<<(ostream &os, const mint &b) {
    return os << b.get();
  }

  friend istream &operator>>(istream &is, mint &b) {
    int64_t t;
    is >> t;
    b = LazyMontgomeryModInt<mod>(t);
    return (is);
  }

  constexpr u32 get() const {
    u32 ret = reduce(a);
    return ret >= mod ? ret - mod : ret;
  }

  static constexpr u32 get_mod() { return mod; }
};
#line 2 "ntt/ntt.hpp"

template <typename mint>
struct NTT {
  static constexpr uint32_t get_pr() {
    uint32_t _mod = mint::get_mod();
    using u64 = uint64_t;
    u64 ds[32] = {};
    int idx = 0;
    u64 m = _mod - 1;
    for (u64 i = 2; i * i <= m; ++i) {
      if (m % i == 0) {
        ds[idx++] = i;
        while (m % i == 0) m /= i;
      }
    }
    if (m != 1) ds[idx++] = m;

    uint32_t _pr = 2;
    while (1) {
      int flg = 1;
      for (int i = 0; i < idx; ++i) {
        u64 a = _pr, b = (_mod - 1) / ds[i], r = 1;
        while (b) {
          if (b & 1) r = r * a % _mod;
          a = a * a % _mod;
          b >>= 1;
        }
        if (r == 1) {
          flg = 0;
          break;
        }
      }
      if (flg == 1) break;
      ++_pr;
    }
    return _pr;
  };

  static constexpr uint32_t mod = mint::get_mod();
  static constexpr uint32_t pr = get_pr();
  static constexpr int level = __builtin_ctzll(mod - 1);
  mint dw[level], dy[level];

  void setwy(int k) {
    mint w[level], y[level];
    w[k - 1] = mint(pr).pow((mod - 1) / (1 << k));
    y[k - 1] = w[k - 1].inverse();
    for (int i = k - 2; i > 0; --i)
      w[i] = w[i + 1] * w[i + 1], y[i] = y[i + 1] * y[i + 1];
    dw[1] = w[1], dy[1] = y[1], dw[2] = w[2], dy[2] = y[2];
    for (int i = 3; i < k; ++i) {
      dw[i] = dw[i - 1] * y[i - 2] * w[i];
      dy[i] = dy[i - 1] * w[i - 2] * y[i];
    }
  }

  NTT() { setwy(level); }

  void fft4(vector<mint> &a, int k) {
    if ((int)a.size() <= 1) return;
    if (k == 1) {
      mint a1 = a[1];
      a[1] = a[0] - a[1];
      a[0] = a[0] + a1;
      return;
    }
    if (k & 1) {
      int v = 1 << (k - 1);
      for (int j = 0; j < v; ++j) {
        mint ajv = a[j + v];
        a[j + v] = a[j] - ajv;
        a[j] += ajv;
      }
    }
    int u = 1 << (2 + (k & 1));
    int v = 1 << (k - 2 - (k & 1));
    mint one = mint(1);
    mint imag = dw[1];
    while (v) {
      // jh = 0
      {
        int j0 = 0;
        int j1 = v;
        int j2 = j1 + v;
        int j3 = j2 + v;
        for (; j0 < v; ++j0, ++j1, ++j2, ++j3) {
          mint t0 = a[j0], t1 = a[j1], t2 = a[j2], t3 = a[j3];
          mint t0p2 = t0 + t2, t1p3 = t1 + t3;
          mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag;
          a[j0] = t0p2 + t1p3, a[j1] = t0p2 - t1p3;
          a[j2] = t0m2 + t1m3, a[j3] = t0m2 - t1m3;
        }
      }
      // jh >= 1
      mint ww = one, xx = one * dw[2], wx = one;
      for (int jh = 4; jh < u;) {
        ww = xx * xx, wx = ww * xx;
        int j0 = jh * v;
        int je = j0 + v;
        int j2 = je + v;
        for (; j0 < je; ++j0, ++j2) {
          mint t0 = a[j0], t1 = a[j0 + v] * xx, t2 = a[j2] * ww,
               t3 = a[j2 + v] * wx;
          mint t0p2 = t0 + t2, t1p3 = t1 + t3;
          mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag;
          a[j0] = t0p2 + t1p3, a[j0 + v] = t0p2 - t1p3;
          a[j2] = t0m2 + t1m3, a[j2 + v] = t0m2 - t1m3;
        }
        xx *= dw[__builtin_ctzll((jh += 4))];
      }
      u <<= 2;
      v >>= 2;
    }
  }

  void ifft4(vector<mint> &a, int k) {
    if ((int)a.size() <= 1) return;
    if (k == 1) {
      mint a1 = a[1];
      a[1] = a[0] - a[1];
      a[0] = a[0] + a1;
      return;
    }
    int u = 1 << (k - 2);
    int v = 1;
    mint one = mint(1);
    mint imag = dy[1];
    while (u) {
      // jh = 0
      {
        int j0 = 0;
        int j1 = v;
        int j2 = v + v;
        int j3 = j2 + v;
        for (; j0 < v; ++j0, ++j1, ++j2, ++j3) {
          mint t0 = a[j0], t1 = a[j1], t2 = a[j2], t3 = a[j3];
          mint t0p1 = t0 + t1, t2p3 = t2 + t3;
          mint t0m1 = t0 - t1, t2m3 = (t2 - t3) * imag;
          a[j0] = t0p1 + t2p3, a[j2] = t0p1 - t2p3;
          a[j1] = t0m1 + t2m3, a[j3] = t0m1 - t2m3;
        }
      }
      // jh >= 1
      mint ww = one, xx = one * dy[2], yy = one;
      u <<= 2;
      for (int jh = 4; jh < u;) {
        ww = xx * xx, yy = xx * imag;
        int j0 = jh * v;
        int je = j0 + v;
        int j2 = je + v;
        for (; j0 < je; ++j0, ++j2) {
          mint t0 = a[j0], t1 = a[j0 + v], t2 = a[j2], t3 = a[j2 + v];
          mint t0p1 = t0 + t1, t2p3 = t2 + t3;
          mint t0m1 = (t0 - t1) * xx, t2m3 = (t2 - t3) * yy;
          a[j0] = t0p1 + t2p3, a[j2] = (t0p1 - t2p3) * ww;
          a[j0 + v] = t0m1 + t2m3, a[j2 + v] = (t0m1 - t2m3) * ww;
        }
        xx *= dy[__builtin_ctzll(jh += 4)];
      }
      u >>= 4;
      v <<= 2;
    }
    if (k & 1) {
      u = 1 << (k - 1);
      for (int j = 0; j < u; ++j) {
        mint ajv = a[j] - a[j + u];
        a[j] += a[j + u];
        a[j + u] = ajv;
      }
    }
  }

  void ntt(vector<mint> &a) {
    if ((int)a.size() <= 1) return;
    fft4(a, __builtin_ctz(a.size()));
  }

  void intt(vector<mint> &a) {
    if ((int)a.size() <= 1) return;
    ifft4(a, __builtin_ctz(a.size()));
    mint iv = mint(a.size()).inverse();
    for (auto &x : a) x *= iv;
  }

  vector<mint> multiply(const vector<mint> &a, const vector<mint> &b) {
    int l = a.size() + b.size() - 1;
    if (min<int>(a.size(), b.size()) <= 40) {
      vector<mint> s(l);
      for (int i = 0; i < (int)a.size(); ++i)
        for (int j = 0; j < (int)b.size(); ++j) s[i + j] += a[i] * b[j];
      return s;
    }
    int k = 2, M = 4;
    while (M < l) M <<= 1, ++k;
    setwy(k);
    vector<mint> s(M);
    for (int i = 0; i < (int)a.size(); ++i) s[i] = a[i];
    fft4(s, k);
    if (a.size() == b.size() && a == b) {
      for (int i = 0; i < M; ++i) s[i] *= s[i];
    } else {
      vector<mint> t(M);
      for (int i = 0; i < (int)b.size(); ++i) t[i] = b[i];
      fft4(t, k);
      for (int i = 0; i < M; ++i) s[i] *= t[i];
    }
    ifft4(s, k);
    s.resize(l);
    mint invm = mint(M).inverse();
    for (int i = 0; i < l; ++i) s[i] *= invm;
    return s;
  }

  void ntt_doubling(vector<mint> &a) {
    int M = (int)a.size();
    auto b = a;
    intt(b);
    mint r = 1, zeta = mint(pr).pow((mint::get_mod() - 1) / (M << 1));
    for (int i = 0; i < M; i++) b[i] *= r, r *= zeta;
    ntt(b);
    copy(begin(b), end(b), back_inserter(a));
  }
};
#line 5 "ntt/arbitrary-ntt.hpp"

namespace ArbitraryNTT {
using i64 = int64_t;
using u128 = __uint128_t;
constexpr int32_t m0 = 167772161;
constexpr int32_t m1 = 469762049;
constexpr int32_t m2 = 754974721;
using mint0 = LazyMontgomeryModInt<m0>;
using mint1 = LazyMontgomeryModInt<m1>;
using mint2 = LazyMontgomeryModInt<m2>;
constexpr int r01 = mint1(m0).inverse().get();
constexpr int r02 = mint2(m0).inverse().get();
constexpr int r12 = mint2(m1).inverse().get();
constexpr int r02r12 = i64(r02) * r12 % m2;
constexpr i64 w1 = m0;
constexpr i64 w2 = i64(m0) * m1;

template <typename T, typename submint>
vector<submint> mul(const vector<T> &a, const vector<T> &b) {
  static NTT<submint> ntt;
  vector<submint> s(a.size()), t(b.size());
  for (int i = 0; i < (int)a.size(); ++i) s[i] = i64(a[i] % submint::get_mod());
  for (int i = 0; i < (int)b.size(); ++i) t[i] = i64(b[i] % submint::get_mod());
  return ntt.multiply(s, t);
}

template <typename T>
vector<int> multiply(const vector<T> &s, const vector<T> &t, int mod) {
  auto d0 = mul<T, mint0>(s, t);
  auto d1 = mul<T, mint1>(s, t);
  auto d2 = mul<T, mint2>(s, t);
  int n = d0.size();
  vector<int> ret(n);
  const int W1 = w1 % mod;
  const int W2 = w2 % mod;
  for (int i = 0; i < n; i++) {
    int n1 = d1[i].get(), n2 = d2[i].get(), a = d0[i].get();
    int b = i64(n1 + m1 - a) * r01 % m1;
    int c = (i64(n2 + m2 - a) * r02r12 + i64(m2 - b) * r12) % m2;
    ret[i] = (i64(a) + i64(b) * W1 + i64(c) * W2) % mod;
  }
  return ret;
}

template <typename mint>
vector<mint> multiply(const vector<mint> &a, const vector<mint> &b) {
  if (a.size() == 0 && b.size() == 0) return {};
  if (min<int>(a.size(), b.size()) < 128) {
    vector<mint> ret(a.size() + b.size() - 1);
    for (int i = 0; i < (int)a.size(); ++i)
      for (int j = 0; j < (int)b.size(); ++j) ret[i + j] += a[i] * b[j];
    return ret;
  }
  vector<int> s(a.size()), t(b.size());
  for (int i = 0; i < (int)a.size(); ++i) s[i] = a[i].get();
  for (int i = 0; i < (int)b.size(); ++i) t[i] = b[i].get();
  vector<int> u = multiply<int>(s, t, mint::get_mod());
  vector<mint> ret(u.size());
  for (int i = 0; i < (int)u.size(); ++i) ret[i] = mint(u[i]);
  return ret;
}

template <typename T>
vector<u128> multiply_u128(const vector<T> &s, const vector<T> &t) {
  if (s.size() == 0 && t.size() == 0) return {};
  if (min<int>(s.size(), t.size()) < 128) {
    vector<u128> ret(s.size() + t.size() - 1);
    for (int i = 0; i < (int)s.size(); ++i)
      for (int j = 0; j < (int)t.size(); ++j) ret[i + j] += i64(s[i]) * t[j];
    return ret;
  }
  auto d0 = mul<T, mint0>(s, t);
  auto d1 = mul<T, mint1>(s, t);
  auto d2 = mul<T, mint2>(s, t);
  int n = d0.size();
  vector<u128> ret(n);
  for (int i = 0; i < n; i++) {
    i64 n1 = d1[i].get(), n2 = d2[i].get();
    i64 a = d0[i].get();
    i64 b = (n1 + m1 - a) * r01 % m1;
    i64 c = ((n2 + m2 - a) * r02r12 + (m2 - b) * r12) % m2;
    ret[i] = a + b * w1 + u128(c) * w2;
  }
  return ret;
}
}  // namespace ArbitraryNTT
#line 14 "math/bigint.hpp"

namespace MultiPrecisionIntegerImpl {
struct TENS {
  static constexpr int offset = 30;
  constexpr TENS() : _tend() {
    _tend[offset] = 1;
    for (int i = 1; i <= offset; i++) {
      _tend[offset + i] = _tend[offset + i - 1] * 10.0;
      _tend[offset - i] = 1.0 / _tend[offset + i];
    }
  }
  long double ten_ld(int n) const {
    assert(-offset <= n and n <= offset);
    return _tend[n + offset];
  }

 private:
  long double _tend[offset * 2 + 1];
};
}  // namespace MultiPrecisionIntegerImpl

// 0 は neg=false, dat={} として扱う
struct MultiPrecisionInteger {
  using M = MultiPrecisionInteger;
  inline constexpr static MultiPrecisionIntegerImpl::TENS tens = {};

  static constexpr int D = 1000000000;
  static constexpr int logD = 9;
  bool neg;
  vector<int> dat;

  MultiPrecisionInteger() : neg(false), dat() {}

  MultiPrecisionInteger(bool n, const vector<int>& d) : neg(n), dat(d) {}

  template <typename I,
            enable_if_t<internal::is_broadly_integral_v<I>>* = nullptr>
  MultiPrecisionInteger(I x) : neg(false) {
    if constexpr (internal::is_broadly_signed_v<I>) {
      if (x < 0) neg = true, x = -x;
    }
    while (x) dat.push_back(x % D), x /= D;
  }

  MultiPrecisionInteger(const string& S) : neg(false) {
    assert(!S.empty());
    if (S.size() == 1u && S[0] == '0') return;
    int l = 0;
    if (S[0] == '-') ++l, neg = true;
    for (int ie = S.size(); l < ie; ie -= logD) {
      int is = max(l, ie - logD);
      long long x = 0;
      for (int i = is; i < ie; i++) x = x * 10 + S[i] - '0';
      dat.push_back(x);
    }
    while(!dat.empty() and dat.back() == 0) dat.pop_back();
  }

  friend M operator+(const M& lhs, const M& rhs) {
    if (lhs.neg == rhs.neg) return {lhs.neg, _add(lhs.dat, rhs.dat)};
    if (_leq(lhs.dat, rhs.dat)) {
      // |l| <= |r|
      auto c = _sub(rhs.dat, lhs.dat);
      bool n = _is_zero(c) ? false : rhs.neg;
      return {n, c};
    }
    auto c = _sub(lhs.dat, rhs.dat);
    bool n = _is_zero(c) ? false : lhs.neg;
    return {n, c};
  }
  friend M operator-(const M& lhs, const M& rhs) { return lhs + (-rhs); }

  friend M operator*(const M& lhs, const M& rhs) {
    auto c = _mul(lhs.dat, rhs.dat);
    bool n = _is_zero(c) ? false : (lhs.neg ^ rhs.neg);
    return {n, c};
  }
  friend pair<M, M> divmod(const M& lhs, const M& rhs) {
    auto dm = _divmod_newton(lhs.dat, rhs.dat);
    bool dn = _is_zero(dm.first) ? false : lhs.neg != rhs.neg;
    bool mn = _is_zero(dm.second) ? false : lhs.neg;
    return {M{dn, dm.first}, M{mn, dm.second}};
  }
  friend M operator/(const M& lhs, const M& rhs) {
    return divmod(lhs, rhs).first;
  }
  friend M operator%(const M& lhs, const M& rhs) {
    return divmod(lhs, rhs).second;
  }

  M& operator+=(const M& rhs) { return (*this) = (*this) + rhs; }
  M& operator-=(const M& rhs) { return (*this) = (*this) - rhs; }
  M& operator*=(const M& rhs) { return (*this) = (*this) * rhs; }
  M& operator/=(const M& rhs) { return (*this) = (*this) / rhs; }
  M& operator%=(const M& rhs) { return (*this) = (*this) % rhs; }

  M operator-() const {
    if (is_zero()) return *this;
    return {!neg, dat};
  }
  M operator+() const { return *this; }
  friend M abs(const M& m) { return {false, m.dat}; }
  bool is_zero() const { return _is_zero(dat); }

  friend bool operator==(const M& lhs, const M& rhs) {
    return lhs.neg == rhs.neg && lhs.dat == rhs.dat;
  }
  friend bool operator!=(const M& lhs, const M& rhs) {
    return lhs.neg != rhs.neg || lhs.dat != rhs.dat;
  }
  friend bool operator<(const M& lhs, const M& rhs) {
    if (lhs == rhs) return false;
    return _neq_lt(lhs, rhs);
  }
  friend bool operator<=(const M& lhs, const M& rhs) {
    if (lhs == rhs) return true;
    return _neq_lt(lhs, rhs);
  }
  friend bool operator>(const M& lhs, const M& rhs) {
    if (lhs == rhs) return false;
    return _neq_lt(rhs, lhs);
  }
  friend bool operator>=(const M& lhs, const M& rhs) {
    if (lhs == rhs) return true;
    return _neq_lt(rhs, lhs);
  }

  // a * 10^b (1 <= |a| < 10) の形で渡す
  // 相対誤差:10^{-16} ~ 10^{-19} 程度 (処理系依存)
  pair<long double, int> dfp() const {
    if (is_zero()) return {0, 0};
    int l = max<int>(0, _size() - 3);
    int b = logD * l;
    string prefix{};
    for (int i = _size() - 1; i >= l; i--) {
      prefix += _itos(dat[i], i != _size() - 1);
    }
    b += prefix.size() - 1;
    long double a = 0;
    for (auto& c : prefix) a = a * 10.0 + (c - '0');
    a *= tens.ten_ld(-((int)prefix.size()) + 1);
    a = clamp<long double>(a, 1.0, nextafterl(10.0, 1.0));
    if (neg) a = -a;
    return {a, b};
  }
  string to_string() const {
    if (is_zero()) return "0";
    string res;
    if (neg) res.push_back('-');
    for (int i = _size() - 1; i >= 0; i--) {
      res += _itos(dat[i], i != _size() - 1);
    }
    return res;
  }
  long double to_ld() const {
    auto [a, b] = dfp();
    if (-tens.offset <= b and b <= tens.offset) {
      return a * tens.ten_ld(b);
    }
    return a * powl(10, b);
  }
  long long to_ll() const {
    long long res = _to_ll(dat);
    return neg ? -res : res;
  }
  __int128_t to_i128() const {
    __int128_t res = _to_i128(dat);
    return neg ? -res : res;
  }

  friend istream& operator>>(istream& is, M& m) {
    string s;
    is >> s;
    m = M{s};
    return is;
  }

  friend ostream& operator<<(ostream& os, const M& m) {
    return os << m.to_string();
  }

  // 内部の関数をテスト
  static void _test_private_function(const M&, const M&);

 private:
  // size
  int _size() const { return dat.size(); }
  // a == b
  static bool _eq(const vector<int>& a, const vector<int>& b) { return a == b; }
  // a < b
  static bool _lt(const vector<int>& a, const vector<int>& b) {
    if (a.size() != b.size()) return a.size() < b.size();
    for (int i = a.size() - 1; i >= 0; i--) {
      if (a[i] != b[i]) return a[i] < b[i];
    }
    return false;
  }
  // a <= b
  static bool _leq(const vector<int>& a, const vector<int>& b) {
    return _eq(a, b) || _lt(a, b);
  }
  // a < b (s.t. a != b)
  static bool _neq_lt(const M& lhs, const M& rhs) {
    assert(lhs != rhs);
    if (lhs.neg != rhs.neg) return lhs.neg;
    bool f = _lt(lhs.dat, rhs.dat);
    if (f) return !lhs.neg;
    return lhs.neg;
  }
  // a == 0
  static bool _is_zero(const vector<int>& a) { return a.empty(); }
  // a == 1
  static bool _is_one(const vector<int>& a) {
    return (int)a.size() == 1 && a[0] == 1;
  }
  // 末尾 0 を削除
  static void _shrink(vector<int>& a) {
    while (a.size() && a.back() == 0) a.pop_back();
  }
  // 末尾 0 を削除
  void _shrink() {
    while (_size() && dat.back() == 0) dat.pop_back();
  }
  // a + b
  static vector<int> _add(const vector<int>& a, const vector<int>& b) {
    vector<int> c(max(a.size(), b.size()) + 1);
    for (int i = 0; i < (int)a.size(); i++) c[i] += a[i];
    for (int i = 0; i < (int)b.size(); i++) c[i] += b[i];
    for (int i = 0; i < (int)c.size() - 1; i++) {
      if (c[i] >= D) c[i] -= D, c[i + 1]++;
    }
    _shrink(c);
    return c;
  }
  // a - b
  static vector<int> _sub(const vector<int>& a, const vector<int>& b) {
    assert(_leq(b, a));
    vector<int> c{a};
    int borrow = 0;
    for (int i = 0; i < (int)a.size(); i++) {
      if (i < (int)b.size()) borrow += b[i];
      c[i] -= borrow;
      borrow = 0;
      if (c[i] < 0) c[i] += D, borrow = 1;
    }
    assert(borrow == 0);
    _shrink(c);
    return c;
  }
  // a * b (fft)
  static vector<int> _mul_fft(const vector<int>& a, const vector<int>& b) {
    if (a.empty() || b.empty()) return {};
    auto m = ArbitraryNTT::multiply_u128(a, b);
    vector<int> c;
    c.reserve(m.size() + 3);
    __uint128_t x = 0;
    for (int i = 0;; i++) {
      if (i >= (int)m.size() && x == 0) break;
      if (i < (int)m.size()) x += m[i];
      c.push_back(x % D);
      x /= D;
    }
    _shrink(c);
    return c;
  }
  // a * b (naive)
  static vector<int> _mul_naive(const vector<int>& a, const vector<int>& b) {
    if (a.empty() || b.empty()) return {};
    vector<long long> prod(a.size() + b.size() - 1 + 1);
    for (int i = 0; i < (int)a.size(); i++) {
      for (int j = 0; j < (int)b.size(); j++) {
        long long p = 1LL * a[i] * b[j];
        prod[i + j] += p;
        if (prod[i + j] >= (4LL * D * D)) {
          prod[i + j] -= 4LL * D * D;
          prod[i + j + 1] += 4LL * D;
        }
      }
    }
    vector<int> c(prod.size() + 1);
    long long x = 0;
    int i = 0;
    for (; i < (int)prod.size(); i++) x += prod[i], c[i] = x % D, x /= D;
    while (x) c[i] = x % D, x /= D, i++;
    _shrink(c);
    return c;
  }
  // a * b
  static vector<int> _mul(const vector<int>& a, const vector<int>& b) {
    if (_is_zero(a) || _is_zero(b)) return {};
    if (_is_one(a)) return b;
    if (_is_one(b)) return a;
    if (min<int>(a.size(), b.size()) <= 128) {
      return a.size() < b.size() ? _mul_naive(b, a) : _mul_naive(a, b);
    }
    return _mul_fft(a, b);
  }
  // 0 <= A < 1e18, 1 <= B < 1e9
  static pair<vector<int>, vector<int>> _divmod_li(const vector<int>& a,
                                                   const vector<int>& b) {
    assert(0 <= (int)a.size() && (int)a.size() <= 2);
    assert((int)b.size() == 1);
    long long va = _to_ll(a);
    int vb = b[0];
    return {_integer_to_vec(va / vb), _integer_to_vec(va % vb)};
  }
  // 0 <= A < 1e18, 1 <= B < 1e18
  static pair<vector<int>, vector<int>> _divmod_ll(const vector<int>& a,
                                                   const vector<int>& b) {
    assert(0 <= (int)a.size() && (int)a.size() <= 2);
    assert(1 <= (int)b.size() && (int)b.size() <= 2);
    long long va = _to_ll(a), vb = _to_ll(b);
    return {_integer_to_vec(va / vb), _integer_to_vec(va % vb)};
  }
  // 1 <= B < 1e9
  static pair<vector<int>, vector<int>> _divmod_1e9(const vector<int>& a,
                                                    const vector<int>& b) {
    assert((int)b.size() == 1);
    if (b[0] == 1) return {a, {}};
    if ((int)a.size() <= 2) return _divmod_li(a, b);
    vector<int> quo(a.size());
    long long d = 0;
    int b0 = b[0];
    for (int i = a.size() - 1; i >= 0; i--) {
      d = d * D + a[i];
      assert(d < 1LL * D * b0);
      int q = d / b0, r = d % b0;
      quo[i] = q, d = r;
    }
    _shrink(quo);
    return {quo, d ? vector<int>{int(d)} : vector<int>{}};
  }
  // 0 <= A, 1 <= B
  static pair<vector<int>, vector<int>> _divmod_naive(const vector<int>& a,
                                                      const vector<int>& b) {
    if (_is_zero(b)) {
      cerr << "Divide by Zero Exception" << endl;
      exit(1);
    }
    assert(1 <= (int)b.size());
    if ((int)b.size() == 1) return _divmod_1e9(a, b);
    if (max<int>(a.size(), b.size()) <= 2) return _divmod_ll(a, b);
    if (_lt(a, b)) return {{}, a};
    // B >= 1e9, A >= B
    int norm = D / (b.back() + 1);
    vector<int> x = _mul(a, {norm});
    vector<int> y = _mul(b, {norm});
    int yb = y.back();
    vector<int> quo(x.size() - y.size() + 1);
    vector<int> rem(x.end() - y.size(), x.end());
    for (int i = quo.size() - 1; i >= 0; i--) {
      if (rem.size() < y.size()) {
        // do nothing
      } else if (rem.size() == y.size()) {
        if (_leq(y, rem)) {
          quo[i] = 1, rem = _sub(rem, y);
        }
      } else {
        assert(y.size() + 1 == rem.size());
        long long rb = 1LL * rem[rem.size() - 1] * D + rem[rem.size() - 2];
        int q = rb / yb;
        vector<int> yq = _mul(y, {q});
        // 真の商は q-2 以上 q+1 以下だが自信が無いので念のため while を回す
        while (_lt(rem, yq)) q--, yq = _sub(yq, y);
        rem = _sub(rem, yq);
        while (_leq(y, rem)) q++, rem = _sub(rem, y);
        quo[i] = q;
      }
      if (i) rem.insert(begin(rem), x[i - 1]);
    }
    _shrink(quo), _shrink(rem);
    auto [q2, r2] = _divmod_1e9(rem, {norm});
    assert(_is_zero(r2));
    return {quo, q2};
  }

  // 0 <= A, 1 <= B
  static pair<vector<int>, vector<int>> _divmod_dc(const vector<int>& a,
                                                   const vector<int>& b);

  // 1 / a を 絶対誤差 B^{-deg} で求める
  static vector<int> _calc_inv(const vector<int>& a, int deg) {
    assert(!a.empty() && D / 2 <= a.back() and a.back() < D);
    int k = deg, c = a.size();
    while (k > 64) k = (k + 1) / 2;
    vector<int> z(c + k + 1);
    z.back() = 1;
    z = _divmod_naive(z, a).first;
    while (k < deg) {
      vector<int> s = _mul(z, z);
      s.insert(begin(s), 0);
      int d = min(c, 2 * k + 1);
      vector<int> t{end(a) - d, end(a)}, u = _mul(s, t);
      u.erase(begin(u), begin(u) + d);
      vector<int> w(k + 1), w2 = _add(z, z);
      copy(begin(w2), end(w2), back_inserter(w));
      z = _sub(w, u);
      z.erase(begin(z));
      k *= 2;
    }
    z.erase(begin(z), begin(z) + k - deg);
    return z;
  }

  static pair<vector<int>, vector<int>> _divmod_newton(const vector<int>& a,
                                                       const vector<int>& b) {
    if (_is_zero(b)) {
      cerr << "Divide by Zero Exception" << endl;
      exit(1);
    }
    if ((int)b.size() <= 64) return _divmod_naive(a, b);
    if ((int)a.size() - (int)b.size() <= 64) return _divmod_naive(a, b);
    int norm = D / (b.back() + 1);
    vector<int> x = _mul(a, {norm});
    vector<int> y = _mul(b, {norm});
    int s = x.size(), t = y.size();
    int deg = s - t + 2;
    vector<int> z = _calc_inv(y, deg);
    vector<int> q = _mul(x, z);
    q.erase(begin(q), begin(q) + t + deg);
    vector<int> yq = _mul(y, {q});
    while (_lt(x, yq)) q = _sub(q, {1}), yq = _sub(yq, y);
    vector<int> r = _sub(x, yq);
    while (_leq(y, r)) q = _add(q, {1}), r = _sub(r, y);
    _shrink(q), _shrink(r);
    auto [q2, r2] = _divmod_1e9(r, {norm});
    assert(_is_zero(r2));
    return {q, q2};
  }

  // int -> string
  // 先頭かどうかに応じて zero padding するかを決める
  static string _itos(int x, bool zero_padding) {
    assert(0 <= x && x < D);
    string res;
    for (int i = 0; i < logD; i++) {
      res.push_back('0' + x % 10), x /= 10;
    }
    if (!zero_padding) {
      while (res.size() && res.back() == '0') res.pop_back();
      assert(!res.empty());
    }
    reverse(begin(res), end(res));
    return res;
  }

  // convert ll to vec
  template <typename I,
            enable_if_t<internal::is_broadly_integral_v<I>>* = nullptr>
  static vector<int> _integer_to_vec(I x) {
    if constexpr (internal::is_broadly_signed_v<I>) {
      assert(x >= 0);
    }
    vector<int> res;
    while (x) res.push_back(x % D), x /= D;
    return res;
  }

  static long long _to_ll(const vector<int>& a) {
    long long res = 0;
    for (int i = (int)a.size() - 1; i >= 0; i--) res = res * D + a[i];
    return res;
  }

  static __int128_t _to_i128(const vector<int>& a) {
    __int128_t res = 0;
    for (int i = (int)a.size() - 1; i >= 0; i--) res = res * D + a[i];
    return res;
  }

  static void _dump(const vector<int>& a, string s = "") {
    if (!s.empty()) cerr << s << " : ";
    cerr << "{ ";
    for (int i = 0; i < (int)a.size(); i++) cerr << a[i] << ", ";
    cerr << "}" << endl;
  }
};

using bigint = MultiPrecisionInteger;

/**
 * @brief 多倍長整数
 */
#line 3 "math/bigint-garner.hpp"

namespace GarnerImpl {

template <typename T,
          enable_if_t<is_integral_v<T> || is_same_v<T, __int128_t>>* = nullptr>
T inv_mod(T a, T m) {
  assert(0 <= a);
  if (a >= m) a %= m;
  T b = m, s = 1, t = 0;
  while (true) {
    if (a == 1) return s;
    t -= b / a * s;
    b %= a;
    if (b == 1) return t + m;
    s -= a / b * t;
    a %= b;
  }
}

pair<bigint, bigint> garner_dc(const vector<int>& r, const vector<int>& m) {
  int N = m.size();
  if (N == 0) return {0, 1};
  int B = 1;
  while (B < N) B *= 2;
  vector<bigint> tree(2 * B);
  for (int i = 0; i < B; i++) tree[B + i] = i < (int)m.size() ? m[i] : 1;
  for (int i = B - 1; i; i--) tree[i] = tree[i * 2 + 0] * tree[i * 2 + 1];
  auto calc = [&](auto&& rc, int ti, bigint X, bigint Y, int L,
                  int R) -> bigint {
    if (N <= L) return 0;
    X %= tree[ti], Y %= tree[ti];
    if (L + 1 == R) {
      int xl = X.to_ll(), yl = Y.to_ll();
      int t = (1LL * (r[L] - xl) * inv_mod(yl, m[L])) % m[L];
      return t < 0 ? t + m[L] : t;
    }
    auto& prod = tree[ti * 2 + 0];
    int M = (L + R) / 2;
    auto xl = rc(rc, ti * 2 + 0, X, Y, L, M);
    auto xr = rc(rc, ti * 2 + 1, X + xl * Y, Y * prod, M, R);
    return xl + xr * prod;
  };
  bigint ans = calc(calc, 1, 0, 1, 0, B);
  return {ans, tree[1]};
}

pair<bigint, bigint> garner_naive(const vector<int>& r, const vector<int>& m) {
  int N = r.size();
  if (N == 0) return {0, 1};
  vector<int> y(N), x(N), t(N);
  for (int i = 0; i < N; i++) y[i] = 1 % m[i];
  for (int i = 0; i < N; ++i) {
    t[i] = (1LL * (r[i] - x[i]) * inv_mod(y[i], m[i])) % m[i];
    if (t[i] < 0) t[i] += m[i];
    for (int j = i + 1; j < N; j++) {
      x[j] = (x[j] + 1LL * y[j] * t[i]) % m[j];
      y[j] = 1LL * y[j] * m[i] % m[j];
    }
  }
  bigint ans = 0, mod = 1;
  for (int i = N - 1; i >= 0; --i) ans = ans * m[i] + t[i], mod *= m[i];
  return {ans, mod};
}

// 1 <= m[i] <= 2 * 10^9
// m が互いに素でない場合:未定義
pair<bigint, bigint> garner_bigint(const vector<int>& r, const vector<int>& m) {
  assert(r.size() == m.size());
  if ((int)m.size() <= 3000) return garner_naive(r, m);
  return garner_dc(r, m);
}
// 1 <= m[i] <= 2 * 10^9
// m が互いに素でない場合:未定義
pair<bigint, bigint> crt_bigint(const vector<int>& r, const vector<int>& m) {
  return garner_bigint(r, m);
}
}  // namespace GarnerImpl

using GarnerImpl::crt_bigint;
using GarnerImpl::garner_bigint;

/**
 * @brief Garner's algorithm for bigint
 */
#line 6 "verify/verify-unit-test/garner-bigint.test.cpp"
//
#line 2 "modint/arbitrary-modint.hpp"

#line 2 "modint/barrett-reduction.hpp"

#line 4 "modint/barrett-reduction.hpp"
using namespace std;

struct Barrett {
  using u32 = unsigned int;
  using i64 = long long;
  using u64 = unsigned long long;
  u32 m;
  u64 im;
  Barrett() : m(), im() {}
  Barrett(int n) : m(n), im(u64(-1) / m + 1) {}
  constexpr inline i64 quo(u64 n) {
    u64 x = u64((__uint128_t(n) * im) >> 64);
    u32 r = n - x * m;
    return m <= r ? x - 1 : x;
  }
  constexpr inline i64 rem(u64 n) {
    u64 x = u64((__uint128_t(n) * im) >> 64);
    u32 r = n - x * m;
    return m <= r ? r + m : r;
  }
  constexpr inline pair<i64, int> quorem(u64 n) {
    u64 x = u64((__uint128_t(n) * im) >> 64);
    u32 r = n - x * m;
    if (m <= r) return {x - 1, r + m};
    return {x, r};
  }
  constexpr inline i64 pow(u64 n, i64 p) {
    u32 a = rem(n), r = m == 1 ? 0 : 1;
    while (p) {
      if (p & 1) r = rem(u64(r) * a);
      a = rem(u64(a) * a);
      p >>= 1;
    }
    return r;
  }
};
#line 4 "modint/arbitrary-modint.hpp"

template <int id>
struct ArbitraryModIntBase {
  int x;

  ArbitraryModIntBase() : x(0) {}

  ArbitraryModIntBase(int64_t y) {
    int z = y % get_mod();
    if (z < 0) z += get_mod();
    x = z;
  }

  ArbitraryModIntBase &operator+=(const ArbitraryModIntBase &p) {
    if ((x += p.x) >= get_mod()) x -= get_mod();
    return *this;
  }

  ArbitraryModIntBase &operator-=(const ArbitraryModIntBase &p) {
    if ((x += get_mod() - p.x) >= get_mod()) x -= get_mod();
    return *this;
  }

  ArbitraryModIntBase &operator*=(const ArbitraryModIntBase &p) {
    x = rem((unsigned long long)x * p.x);
    return *this;
  }

  ArbitraryModIntBase &operator/=(const ArbitraryModIntBase &p) {
    *this *= p.inverse();
    return *this;
  }

  ArbitraryModIntBase operator-() const { return ArbitraryModIntBase(-x); }
  ArbitraryModIntBase operator+() const { return *this; }

  ArbitraryModIntBase operator+(const ArbitraryModIntBase &p) const {
    return ArbitraryModIntBase(*this) += p;
  }

  ArbitraryModIntBase operator-(const ArbitraryModIntBase &p) const {
    return ArbitraryModIntBase(*this) -= p;
  }

  ArbitraryModIntBase operator*(const ArbitraryModIntBase &p) const {
    return ArbitraryModIntBase(*this) *= p;
  }

  ArbitraryModIntBase operator/(const ArbitraryModIntBase &p) const {
    return ArbitraryModIntBase(*this) /= p;
  }

  bool operator==(const ArbitraryModIntBase &p) const { return x == p.x; }

  bool operator!=(const ArbitraryModIntBase &p) const { return x != p.x; }

  ArbitraryModIntBase inverse() const {
    int a = x, b = get_mod(), u = 1, v = 0, t;
    while (b > 0) {
      t = a / b;
      swap(a -= t * b, b);
      swap(u -= t * v, v);
    }
    return ArbitraryModIntBase(u);
  }

  ArbitraryModIntBase pow(int64_t n) const {
    ArbitraryModIntBase ret(1), mul(x);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }

  friend ostream &operator<<(ostream &os, const ArbitraryModIntBase &p) {
    return os << p.x;
  }

  friend istream &operator>>(istream &is, ArbitraryModIntBase &a) {
    int64_t t;
    is >> t;
    a = ArbitraryModIntBase(t);
    return (is);
  }

  int get() const { return x; }

  inline unsigned int rem(unsigned long long p) { return barrett().rem(p); }

  static inline Barrett &barrett() {
    static Barrett b;
    return b;
  }

  static inline int &get_mod() {
    static int mod = 0;
    return mod;
  }

  static void set_mod(int md) {
    assert(0 < md && md <= (1LL << 30) - 1);
    get_mod() = md;
    barrett() = Barrett(md);
  }
};

using ArbitraryModInt = ArbitraryModIntBase<-1>;

/**
 * @brief modint (2^{30} 未満の任意 mod 用)
 */
#line 8 "verify/verify-unit-test/garner-bigint.test.cpp"
//
#line 2 "prime/fast-factorize.hpp"

#line 6 "prime/fast-factorize.hpp"
using namespace std;

#line 2 "internal/internal-math.hpp"

#line 4 "internal/internal-math.hpp"

namespace internal {

#line 10 "internal/internal-math.hpp"
using namespace std;

// a mod p
template <typename T>
T safe_mod(T a, T p) {
  a %= p;
  if constexpr (is_broadly_signed_v<T>) {
    if (a < 0) a += p;
  }
  return a;
}

// 返り値:pair(g, x)
// s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
template <typename T>
pair<T, T> inv_gcd(T a, T p) {
  static_assert(is_broadly_signed_v<T>);
  a = safe_mod(a, p);
  if (a == 0) return {p, 0};
  T b = p, x = 1, y = 0;
  while (a != 0) {
    T q = b / a;
    swap(a, b %= a);
    swap(x, y -= q * x);
  }
  if (y < 0) y += p / b;
  return {b, y};
}

// 返り値 : a^{-1} mod p
// gcd(a, p) != 1 が必要
template <typename T>
T inv(T a, T p) {
  static_assert(is_broadly_signed_v<T>);
  a = safe_mod(a, p);
  T b = p, x = 1, y = 0;
  while (a != 0) {
    T q = b / a;
    swap(a, b %= a);
    swap(x, y -= q * x);
  }
  assert(b == 1);
  return y < 0 ? y + p : y;
}

// T : 底の型
// U : T*T がオーバーフローしない かつ 指数の型
template <typename T, typename U>
T modpow(T a, U n, T p) {
  a = safe_mod(a, p);
  T ret = 1 % p;
  while (n != 0) {
    if (n % 2 == 1) ret = U(ret) * a % p;
    a = U(a) * a % p;
    n /= 2;
  }
  return ret;
}

// 返り値 : pair(rem, mod)
// 解なしのときは {0, 0} を返す
template <typename T>
pair<T, T> crt(const vector<T>& r, const vector<T>& m) {
  static_assert(is_broadly_signed_v<T>);
  assert(r.size() == m.size());
  int n = int(r.size());
  T r0 = 0, m0 = 1;
  for (int i = 0; i < n; i++) {
    assert(1 <= m[i]);
    T r1 = safe_mod(r[i], m[i]), m1 = m[i];
    if (m0 < m1) swap(r0, r1), swap(m0, m1);
    if (m0 % m1 == 0) {
      if (r0 % m1 != r1) return {0, 0};
      continue;
    }
    auto [g, im] = inv_gcd(m0, m1);
    T u1 = m1 / g;
    if ((r1 - r0) % g) return {0, 0};
    T x = (r1 - r0) / g % u1 * im % u1;
    r0 += x * m0;
    m0 *= u1;
    if (r0 < 0) r0 += m0;
  }
  return {r0, m0};
}

}  // namespace internal
#line 2 "misc/rng.hpp"

#line 2 "internal/internal-seed.hpp"

#line 4 "internal/internal-seed.hpp"
using namespace std;

namespace internal {
unsigned long long non_deterministic_seed() {
  unsigned long long m =
      chrono::duration_cast<chrono::nanoseconds>(
          chrono::high_resolution_clock::now().time_since_epoch())
          .count();
  m ^= 9845834732710364265uLL;
  m ^= m << 24, m ^= m >> 31, m ^= m << 35;
  return m;
}
unsigned long long deterministic_seed() { return 88172645463325252UL; }

// 64 bit の seed 値を生成 (手元では seed 固定)
// 連続で呼び出すと同じ値が何度も返ってくるので注意
// #define RANDOMIZED_SEED するとシードがランダムになる
unsigned long long seed() {
#if defined(NyaanLocal) && !defined(RANDOMIZED_SEED)
  return deterministic_seed();
#else
  return non_deterministic_seed();
#endif
}

}  // namespace internal
#line 4 "misc/rng.hpp"

namespace my_rand {
using i64 = long long;
using u64 = unsigned long long;

// [0, 2^64 - 1)
u64 rng() {
  static u64 _x = internal::seed();
  return _x ^= _x << 7, _x ^= _x >> 9;
}

// [l, r]
i64 rng(i64 l, i64 r) {
  assert(l <= r);
  return l + rng() % u64(r - l + 1);
}

// [l, r)
i64 randint(i64 l, i64 r) {
  assert(l < r);
  return l + rng() % u64(r - l);
}

// choose n numbers from [l, r) without overlapping
vector<i64> randset(i64 l, i64 r, i64 n) {
  assert(l <= r && n <= r - l);
  unordered_set<i64> s;
  for (i64 i = n; i; --i) {
    i64 m = randint(l, r + 1 - i);
    if (s.find(m) != s.end()) m = r - i;
    s.insert(m);
  }
  vector<i64> ret;
  for (auto& x : s) ret.push_back(x);
  return ret;
}

// [0.0, 1.0)
double rnd() { return rng() * 5.42101086242752217004e-20; }
// [l, r)
double rnd(double l, double r) {
  assert(l < r);
  return l + rnd() * (r - l);
}

template <typename T>
void randshf(vector<T>& v) {
  int n = v.size();
  for (int i = 1; i < n; i++) swap(v[i], v[randint(0, i + 1)]);
}

}  // namespace my_rand

using my_rand::randint;
using my_rand::randset;
using my_rand::randshf;
using my_rand::rnd;
using my_rand::rng;
#line 2 "modint/arbitrary-montgomery-modint.hpp"

#line 4 "modint/arbitrary-montgomery-modint.hpp"
using namespace std;

template <typename Int, typename UInt, typename Long, typename ULong, int id>
struct ArbitraryLazyMontgomeryModIntBase {
  using mint = ArbitraryLazyMontgomeryModIntBase;

  inline static UInt mod;
  inline static UInt r;
  inline static UInt n2;
  static constexpr int bit_length = sizeof(UInt) * 8;

  static UInt get_r() {
    UInt ret = mod;
    while (mod * ret != 1) ret *= UInt(2) - mod * ret;
    return ret;
  }
  static void set_mod(UInt m) {
    assert(m < (UInt(1u) << (bit_length - 2)));
    assert((m & 1) == 1);
    mod = m, n2 = -ULong(m) % m, r = get_r();
  }
  UInt a;

  ArbitraryLazyMontgomeryModIntBase() : a(0) {}
  ArbitraryLazyMontgomeryModIntBase(const Long &b)
      : a(reduce(ULong(b % mod + mod) * n2)){};

  static UInt reduce(const ULong &b) {
    return (b + ULong(UInt(b) * UInt(-r)) * mod) >> bit_length;
  }

  mint &operator+=(const mint &b) {
    if (Int(a += b.a - 2 * mod) < 0) a += 2 * mod;
    return *this;
  }
  mint &operator-=(const mint &b) {
    if (Int(a -= b.a) < 0) a += 2 * mod;
    return *this;
  }
  mint &operator*=(const mint &b) {
    a = reduce(ULong(a) * b.a);
    return *this;
  }
  mint &operator/=(const mint &b) {
    *this *= b.inverse();
    return *this;
  }

  mint operator+(const mint &b) const { return mint(*this) += b; }
  mint operator-(const mint &b) const { return mint(*this) -= b; }
  mint operator*(const mint &b) const { return mint(*this) *= b; }
  mint operator/(const mint &b) const { return mint(*this) /= b; }

  bool operator==(const mint &b) const {
    return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
  }
  bool operator!=(const mint &b) const {
    return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
  }
  mint operator-() const { return mint(0) - mint(*this); }
  mint operator+() const { return mint(*this); }

  mint pow(ULong n) const {
    mint ret(1), mul(*this);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul, n >>= 1;
    }
    return ret;
  }

  friend ostream &operator<<(ostream &os, const mint &b) {
    return os << b.get();
  }

  friend istream &operator>>(istream &is, mint &b) {
    Long t;
    is >> t;
    b = ArbitraryLazyMontgomeryModIntBase(t);
    return (is);
  }

  mint inverse() const {
    Int x = get(), y = get_mod(), u = 1, v = 0;
    while (y > 0) {
      Int t = x / y;
      swap(x -= t * y, y);
      swap(u -= t * v, v);
    }
    return mint{u};
  }

  UInt get() const {
    UInt ret = reduce(a);
    return ret >= mod ? ret - mod : ret;
  }

  static UInt get_mod() { return mod; }
};

// id に適当な乱数を割り当てて使う
template <int id>
using ArbitraryLazyMontgomeryModInt =
    ArbitraryLazyMontgomeryModIntBase<int, unsigned int, long long,
                                      unsigned long long, id>;
template <int id>
using ArbitraryLazyMontgomeryModInt64bit =
    ArbitraryLazyMontgomeryModIntBase<long long, unsigned long long, __int128_t,
                                      __uint128_t, id>;
#line 2 "prime/miller-rabin.hpp"

#line 4 "prime/miller-rabin.hpp"
using namespace std;

#line 8 "prime/miller-rabin.hpp"

namespace fast_factorize {

template <typename T, typename U>
bool miller_rabin(const T& n, vector<T> ws) {
  if (n <= 2) return n == 2;
  if (n % 2 == 0) return false;

  T d = n - 1;
  while (d % 2 == 0) d /= 2;
  U e = 1, rev = n - 1;
  for (T w : ws) {
    if (w % n == 0) continue;
    T t = d;
    U y = internal::modpow<T, U>(w, t, n);
    while (t != n - 1 && y != e && y != rev) y = y * y % n, t *= 2;
    if (y != rev && t % 2 == 0) return false;
  }
  return true;
}

bool miller_rabin_u64(unsigned long long n) {
  return miller_rabin<unsigned long long, __uint128_t>(
      n, {2, 325, 9375, 28178, 450775, 9780504, 1795265022});
}

template <typename mint>
bool miller_rabin(unsigned long long n, vector<unsigned long long> ws) {
  if (n <= 2) return n == 2;
  if (n % 2 == 0) return false;

  if (mint::get_mod() != n) mint::set_mod(n);
  unsigned long long d = n - 1;
  while (~d & 1) d >>= 1;
  mint e = 1, rev = n - 1;
  for (unsigned long long w : ws) {
    if (w % n == 0) continue;
    unsigned long long t = d;
    mint y = mint(w).pow(t);
    while (t != n - 1 && y != e && y != rev) y *= y, t *= 2;
    if (y != rev && t % 2 == 0) return false;
  }
  return true;
}

bool is_prime(unsigned long long n) {
  using mint32 = ArbitraryLazyMontgomeryModInt<96229631>;
  using mint64 = ArbitraryLazyMontgomeryModInt64bit<622196072>;

  if (n <= 2) return n == 2;
  if (n % 2 == 0) return false;
  if (n < (1uLL << 30)) {
    return miller_rabin<mint32>(n, {2, 7, 61});
  } else if (n < (1uLL << 62)) {
    return miller_rabin<mint64>(
        n, {2, 325, 9375, 28178, 450775, 9780504, 1795265022});
  } else {
    return miller_rabin_u64(n);
  }
}

}  // namespace fast_factorize

using fast_factorize::is_prime;

/**
 * @brief Miller-Rabin primality test
 */
#line 12 "prime/fast-factorize.hpp"

namespace fast_factorize {
using u64 = uint64_t;

template <typename mint, typename T>
T pollard_rho(T n) {
  if (~n & 1) return 2;
  if (is_prime(n)) return n;
  if (mint::get_mod() != n) mint::set_mod(n);
  mint R, one = 1;
  auto f = [&](mint x) { return x * x + R; };
  auto rnd_ = [&]() { return rng() % (n - 2) + 2; };
  while (1) {
    mint x, y, ys, q = one;
    R = rnd_(), y = rnd_();
    T g = 1;
    constexpr int m = 128;
    for (int r = 1; g == 1; r <<= 1) {
      x = y;
      for (int i = 0; i < r; ++i) y = f(y);
      for (int k = 0; g == 1 && k < r; k += m) {
        ys = y;
        for (int i = 0; i < m && i < r - k; ++i) q *= x - (y = f(y));
        g = gcd(q.get(), n);
      }
    }
    if (g == n) do
        g = gcd((x - (ys = f(ys))).get(), n);
      while (g == 1);
    if (g != n) return g;
  }
  exit(1);
}

using i64 = long long;

vector<i64> inner_factorize(u64 n) {
  using mint32 = ArbitraryLazyMontgomeryModInt<452288976>;
  using mint64 = ArbitraryLazyMontgomeryModInt64bit<401243123>;

  if (n <= 1) return {};
  u64 p;
  if (n <= (1LL << 30)) {
    p = pollard_rho<mint32, uint32_t>(n);
  } else if (n <= (1LL << 62)) {
    p = pollard_rho<mint64, uint64_t>(n);
  } else {
    exit(1);
  }
  if (p == n) return {i64(p)};
  auto l = inner_factorize(p);
  auto r = inner_factorize(n / p);
  copy(begin(r), end(r), back_inserter(l));
  return l;
}

vector<i64> factorize(u64 n) {
  auto ret = inner_factorize(n);
  sort(begin(ret), end(ret));
  return ret;
}

map<i64, i64> factor_count(u64 n) {
  map<i64, i64> mp;
  for (auto &x : factorize(n)) mp[x]++;
  return mp;
}

vector<i64> divisors(u64 n) {
  if (n == 0) return {};
  vector<pair<i64, i64>> v;
  for (auto &p : factorize(n)) {
    if (v.empty() || v.back().first != p) {
      v.emplace_back(p, 1);
    } else {
      v.back().second++;
    }
  }
  vector<i64> ret;
  auto f = [&](auto rc, int i, i64 x) -> void {
    if (i == (int)v.size()) {
      ret.push_back(x);
      return;
    }
    rc(rc, i + 1, x);
    for (int j = 0; j < v[i].second; j++) rc(rc, i + 1, x *= v[i].first);
  };
  f(f, 0, 1);
  sort(begin(ret), end(ret));
  return ret;
}

}  // namespace fast_factorize

using fast_factorize::divisors;
using fast_factorize::factor_count;
using fast_factorize::factorize;

/**
 * @brief 高速素因数分解(Miller Rabin/Pollard's Rho)
 * @docs docs/prime/fast-factorize.md
 */
#line 2 "prime/prime-enumerate.hpp"

// Prime Sieve {2, 3, 5, 7, 11, 13, 17, ...}
vector<int> prime_enumerate(int N) {
  vector<bool> sieve(N / 3 + 1, 1);
  for (int p = 5, d = 4, i = 1, sqn = sqrt(N); p <= sqn; p += d = 6 - d, i++) {
    if (!sieve[i]) continue;
    for (int q = p * p / 3, r = d * p / 3 + (d * p % 3 == 2), s = 2 * p,
             qe = sieve.size();
         q < qe; q += r = s - r)
      sieve[q] = 0;
  }
  vector<int> ret{2, 3};
  for (int p = 5, d = 4, i = 1; p <= N; p += d = 6 - d, i++)
    if (sieve[i]) ret.push_back(p);
  while (!ret.empty() && ret.back() > N) ret.pop_back();
  return ret;
}
#line 11 "verify/verify-unit-test/garner-bigint.test.cpp"
//
#line 2 "misc/all.hpp"

#line 2 "misc/fastio.hpp"

#line 8 "misc/fastio.hpp"

using namespace std;

#line 12 "misc/fastio.hpp"

namespace fastio {
static constexpr int SZ = 1 << 17;
static constexpr int offset = 64;
char inbuf[SZ], outbuf[SZ];
int in_left = 0, in_right = 0, out_right = 0;

struct Pre {
  char num[40000];
  constexpr Pre() : num() {
    for (int i = 0; i < 10000; i++) {
      int n = i;
      for (int j = 3; j >= 0; j--) {
        num[i * 4 + j] = n % 10 + '0';
        n /= 10;
      }
    }
  }
} constexpr pre;

void load() {
  int len = in_right - in_left;
  memmove(inbuf, inbuf + in_left, len);
  in_right = len + fread(inbuf + len, 1, SZ - len, stdin);
  in_left = 0;
}
void flush() {
  fwrite(outbuf, 1, out_right, stdout);
  out_right = 0;
}
void skip_space() {
  if (in_left + offset > in_right) load();
  while (inbuf[in_left] <= ' ') in_left++;
}

void single_read(char& c) {
  if (in_left + offset > in_right) load();
  skip_space();
  c = inbuf[in_left++];
}
void single_read(string& S) {
  skip_space();
  while (true) {
    if (in_left == in_right) load();
    int i = in_left;
    for (; i != in_right; i++) {
      if (inbuf[i] <= ' ') break;
    }
    copy(inbuf + in_left, inbuf + i, back_inserter(S));
    in_left = i;
    if (i != in_right) break;
  }
}
template <typename T,
          enable_if_t<internal::is_broadly_integral_v<T>>* = nullptr>
void single_read(T& x) {
  if (in_left + offset > in_right) load();
  skip_space();
  char c = inbuf[in_left++];
  [[maybe_unused]] bool minus = false;
  if constexpr (internal::is_broadly_signed_v<T>) {
    if (c == '-') minus = true, c = inbuf[in_left++];
  }
  x = 0;
  while (c >= '0') {
    x = x * 10 + (c & 15);
    c = inbuf[in_left++];
  }
  if constexpr (internal::is_broadly_signed_v<T>) {
    if (minus) x = -x;
  }
}
void rd() {}
template <typename Head, typename... Tail>
void rd(Head& head, Tail&... tail) {
  single_read(head);
  rd(tail...);
}

void single_write(const char& c) {
  if (out_right > SZ - offset) flush();
  outbuf[out_right++] = c;
}
void single_write(const bool& b) {
  if (out_right > SZ - offset) flush();
  outbuf[out_right++] = b ? '1' : '0';
}
void single_write(const string& S) {
  flush(), fwrite(S.data(), 1, S.size(), stdout);
}
void single_write(const char* p) { flush(), fwrite(p, 1, strlen(p), stdout); }
template <typename T,
          enable_if_t<internal::is_broadly_integral_v<T>>* = nullptr>
void single_write(const T& _x) {
  if (out_right > SZ - offset) flush();
  if (_x == 0) {
    outbuf[out_right++] = '0';
    return;
  }
  T x = _x;
  if constexpr (internal::is_broadly_signed_v<T>) {
    if (x < 0) outbuf[out_right++] = '-', x = -x;
  }
  constexpr int buffer_size = sizeof(T) * 10 / 4;
  char buf[buffer_size];
  int i = buffer_size;
  while (x >= 10000) {
    i -= 4;
    memcpy(buf + i, pre.num + (x % 10000) * 4, 4);
    x /= 10000;
  }
  if (x < 100) {
    if (x < 10) {
      outbuf[out_right] = '0' + x;
      ++out_right;
    } else {
      uint32_t q = (uint32_t(x) * 205) >> 11;
      uint32_t r = uint32_t(x) - q * 10;
      outbuf[out_right] = '0' + q;
      outbuf[out_right + 1] = '0' + r;
      out_right += 2;
    }
  } else {
    if (x < 1000) {
      memcpy(outbuf + out_right, pre.num + (x << 2) + 1, 3);
      out_right += 3;
    } else {
      memcpy(outbuf + out_right, pre.num + (x << 2), 4);
      out_right += 4;
    }
  }
  memcpy(outbuf + out_right, buf + i, buffer_size - i);
  out_right += buffer_size - i;
}
void wt() {}
template <typename Head, typename... Tail>
void wt(const Head& head, const Tail&... tail) {
  single_write(head);
  wt(forward<const Tail>(tail)...);
}
template <typename... Args>
void wtn(const Args&... x) {
  wt(forward<const Args>(x)...);
  wt('\n');
}

struct Dummy {
  Dummy() { atexit(flush); }
} dummy;

}  // namespace fastio
using fastio::rd;
using fastio::skip_space;
using fastio::wt;
using fastio::wtn;
#line 2 "misc/timer.hpp"

#line 4 "misc/timer.hpp"
using namespace std;

struct Timer {
  chrono::high_resolution_clock::time_point st;

  Timer() { reset(); }
  void reset() { st = chrono::high_resolution_clock::now(); }

  long long elapsed() {
    auto ed = chrono::high_resolution_clock::now();
    return chrono::duration_cast<chrono::milliseconds>(ed - st).count();
  }
  long long operator()() { return elapsed(); }
};
#line 13 "verify/verify-unit-test/garner-bigint.test.cpp"

using namespace Nyaan;
using mint = ArbitraryModInt;

// n^e
bigint pow1(ll n, int e) {
  assert(1 <= n);
  if (e == 0) return 1;
  bigint half = pow1(n, e / 2);
  bigint res = half * half;
  if (e & 1) res *= n;
  return res;
}
bigint pow2(ll n, int e) {
  assert(1 <= n);
  int pnum = int(log10(n) * double(e) / 8.8) + 2;
  vector<int> ps, as;
  for (int p = 1000000007; sz(ps) < pnum; p += 2) {
    if (is_prime(p)) ps.push_back(p);
  }
  for (auto& p : ps) {
    mint::set_mod(p);
    as.push_back(mint{n}.pow(e).get());
  }
  auto ans1 = GarnerImpl::garner_naive(as, ps).first;
  auto ans2 = GarnerImpl::garner_dc(as, ps).first;
  assert(ans1 == ans2);
  return ans1;
}

void Nyaan::solve() {
  {
    auto ps = prime_enumerate(1000);
    for (int n = 1; n <= sz(ps); n++) {
      vector<int> rem, mod;
      for (int i = 0; i < n; i++) {
        rem.push_back(rng(0, ps[i] - 1));
        mod.push_back(ps[i]);
      }
      trc(rem, mod);
      auto ans1 = GarnerImpl::garner_naive(rem, mod);
      trc(ans1);
      auto ans2 = GarnerImpl::garner_dc(rem, mod);
      trc(ans2);
      if (ans1 != ans2) exit(1);
    }
  }
  rep1(n, 100) rep(e, 100) {
    bigint ans1 = pow1(n, e);
    bigint ans2 = pow2(n, e);
    if (ans1 != ans2) {
      trc(n, e, ans1, ans2);
    }
    assert(ans1 == ans2);
  }

  /**
  {
    int nmax = 1 << 15;
    vector<int> ps;
    for (int p = TEN(9); sz(ps) < nmax; p--) {
      if (is_prime(p)) ps.push_back(p);
    }
    for (int n = 1; n <= nmax; n *= 2) {
      vector<int> rem, mod;
      for (int i = 0; i < n; i++) {
        rem.push_back(rng(0, ps[i] - 1));
        mod.push_back(ps[i]);
      }
      trc(rem, mod);
      Timer timer;

      timer.reset();
      auto ans1 = GarnerImpl::garner_naive(rem, mod);
      int t1 = timer.elapsed();

      timer.reset();
      auto ans2 = GarnerImpl::garner_dc(rem, mod);
      int t2 = timer.elapsed();

      if (ans1 != ans2) exit(1);
      cerr << "n : " << n << ", ";
      cerr << "naive : " << t1 << " ms , ";
      cerr << "dc : " << t2 << " ms" << endl;
    }
  }
  //*/
  cerr << "OK" << endl;

  int a, b;
  cin >> a >> b;
  cout << a + b << endl;
}
Back to top page