Nyaan's Library

This documentation is automatically generated by online-judge-tools/verification-helper

View on GitHub

:heavy_check_mark: shortest-path/bellman-ford.hpp

Depends on

Verified with

Code

#pragma once



#include "../graph/graph-template.hpp"

// bellman-ford法
// goalが存在しないとき-> 負閉路が存在するときは空列を返す
// goalが存在するとき  -> startとgoalの間に負閉路が存在する時に負閉路を返す
template <typename T>
vector<T> bellman_ford(int N, Edges<T> &es, int start = 0, int goal = -1) {
  T INF = numeric_limits<T>::max() / 2;
  vector<T> d(N, INF);
  d[start] = 0;
  for (int i = 0; i < N; i++) {
    bool update = false;
    for (auto &e : es) {
      if (d[e.src] == INF) continue;
      if (d[e.to] > d[e.src] + e.cost) {
        update = true, d[e.to] = d[e.src] + e.cost;
      }
    }
    if (!update) return d;
  }

  if (goal == -1) return vector<T>();
  vector<bool> negative(N, false);
  for (int i = 0; i < N; i++) {
    for (auto &e : es) {
      if (d[e.src] == INF) continue;
      if (d[e.to] > d[e.src] + e.cost)
        negative[e.to] = true, d[e.to] = d[e.src] + e.cost;
      if (negative[e.src] == true) negative[e.to] = true;
    }
  }

  if (negative[goal] == true)
    return vector<T>();
  else
    return d;
}
#line 2 "shortest-path/bellman-ford.hpp"



#line 2 "graph/graph-template.hpp"

template <typename T>
struct edge {
  int src, to;
  T cost;

  edge(int _to, T _cost) : src(-1), to(_to), cost(_cost) {}
  edge(int _src, int _to, T _cost) : src(_src), to(_to), cost(_cost) {}

  edge &operator=(const int &x) {
    to = x;
    return *this;
  }

  operator int() const { return to; }
};
template <typename T>
using Edges = vector<edge<T>>;
template <typename T>
using WeightedGraph = vector<Edges<T>>;
using UnweightedGraph = vector<vector<int>>;

// Input of (Unweighted) Graph
UnweightedGraph graph(int N, int M = -1, bool is_directed = false,
                      bool is_1origin = true) {
  UnweightedGraph g(N);
  if (M == -1) M = N - 1;
  for (int _ = 0; _ < M; _++) {
    int x, y;
    cin >> x >> y;
    if (is_1origin) x--, y--;
    g[x].push_back(y);
    if (!is_directed) g[y].push_back(x);
  }
  return g;
}

// Input of Weighted Graph
template <typename T>
WeightedGraph<T> wgraph(int N, int M = -1, bool is_directed = false,
                        bool is_1origin = true) {
  WeightedGraph<T> g(N);
  if (M == -1) M = N - 1;
  for (int _ = 0; _ < M; _++) {
    int x, y;
    cin >> x >> y;
    T c;
    cin >> c;
    if (is_1origin) x--, y--;
    g[x].emplace_back(x, y, c);
    if (!is_directed) g[y].emplace_back(y, x, c);
  }
  return g;
}

// Input of Edges
template <typename T>
Edges<T> esgraph(int N, int M, int is_weighted = true, bool is_1origin = true) {
  Edges<T> es;
  for (int _ = 0; _ < M; _++) {
    int x, y;
    cin >> x >> y;
    T c;
    if (is_weighted)
      cin >> c;
    else
      c = 1;
    if (is_1origin) x--, y--;
    es.emplace_back(x, y, c);
  }
  return es;
}

// Input of Adjacency Matrix
template <typename T>
vector<vector<T>> adjgraph(int N, int M, T INF, int is_weighted = true,
                           bool is_directed = false, bool is_1origin = true) {
  vector<vector<T>> d(N, vector<T>(N, INF));
  for (int _ = 0; _ < M; _++) {
    int x, y;
    cin >> x >> y;
    T c;
    if (is_weighted)
      cin >> c;
    else
      c = 1;
    if (is_1origin) x--, y--;
    d[x][y] = c;
    if (!is_directed) d[y][x] = c;
  }
  return d;
}

/**
 * @brief グラフテンプレート
 * @docs docs/graph/graph-template.md
 */
#line 6 "shortest-path/bellman-ford.hpp"

// bellman-ford法
// goalが存在しないとき-> 負閉路が存在するときは空列を返す
// goalが存在するとき  -> startとgoalの間に負閉路が存在する時に負閉路を返す
template <typename T>
vector<T> bellman_ford(int N, Edges<T> &es, int start = 0, int goal = -1) {
  T INF = numeric_limits<T>::max() / 2;
  vector<T> d(N, INF);
  d[start] = 0;
  for (int i = 0; i < N; i++) {
    bool update = false;
    for (auto &e : es) {
      if (d[e.src] == INF) continue;
      if (d[e.to] > d[e.src] + e.cost) {
        update = true, d[e.to] = d[e.src] + e.cost;
      }
    }
    if (!update) return d;
  }

  if (goal == -1) return vector<T>();
  vector<bool> negative(N, false);
  for (int i = 0; i < N; i++) {
    for (auto &e : es) {
      if (d[e.src] == INF) continue;
      if (d[e.to] > d[e.src] + e.cost)
        negative[e.to] = true, d[e.to] = d[e.src] + e.cost;
      if (negative[e.src] == true) negative[e.to] = true;
    }
  }

  if (negative[goal] == true)
    return vector<T>();
  else
    return d;
}
Back to top page