Nyaan's Library

This documentation is automatically generated by online-judge-tools/verification-helper

View on GitHub

:heavy_check_mark: Cooley-Tukey FFT Algorithm
(ntt/cooley-tukey-ntt.hpp)

Depends on

Verified with

Code

#pragma once

#include "rader-ntt.hpp"

template <typename mint>
struct ArbitraryLengthNTT {
  using i64 = long long;

  int factor(int n) {
    for (int i = 2; i * i <= n; i++)
      if (n % i == 0) return i;
    return n;
  }

  vector<int> divisor(int n) {
    vector<int> ret;
    for (int i = 2; i * i <= n; i++) {
      if (n % i == 0) {
        ret.push_back(i);
        ret.push_back(n / i);
      }
    }
    ret.push_back(n);
    sort(begin(ret), end(ret));
    ret.erase(unique(begin(ret), end(ret)), end(ret));
    return ret;
  }

  int len;
  vector<mint> w;
  vector<int> divisors;
  map<int, RaderNTT<mint> *> rader;

  ArbitraryLengthNTT(int len_ = -1) { set_len(len_); }

  void set_len(int len_ = -1) {
    int mod = mint::get_mod();
    if ((len = len_) == -1) len = mod - 1;
    if (mod >= 3 && len <= 1) len = 2;
    while ((mod - 1) % len != 0) ++len;
    mint pr = mint(constexpr_primitive_root(mod)).pow((mod - 1) / len);
    w.resize(len + 1);
    for (int i = 0; i <= len; i++) w[i] = i ? w[i - 1] * pr : mint(1);
    divisors = divisor(len);
  }

  void dft(vector<mint> &a) {
    int N = a.size();
    if (N == 2) {
      mint a01 = a[0] + a[1];
      a[1] = a[0] - a[1];
      a[0] = a01;
      return;
    }
    int d = len / N;
    vector<mint> b(N);
    for (int i = 0, dk = 0; i < N; i++, dk += d) {
      for (int j = 0, k = 0; j < N; j++) {
        b[j] += a[i] * w[k];
        if ((k += dk) >= len) k -= len;
      }
    }
    swap(a, b);
  }

  void ntt_base2(vector<mint> &a) {
    static vector<int> btr;
    int N = a.size();
    assert(N % 2 == 0);
    if (btr.size() != a.size()) {
      btr.resize(N);
      int b = __builtin_ctz(N);
      assert(N == (1 << b));
      for (int i = 0; i < N; i++) {
        btr[i] = (btr[i >> 1] >> 1) + ((i & 1) << (b - 1));
      }
    }
    static vector<mint> basis;
    if (basis.size() < a.size()) {
      basis.resize(N);
      mint b = w[len / N];
      for (int i = N >> 1; i > 0; i >>= 1) {
        mint c = 1;
        for (int j = 0; j < i; ++j) {
          basis[i + j] = c;
          c *= b;
        }
        b *= b;
      }
    }
    for (int i = 0; i < N; i++)
      if (i < btr[i]) swap(a[i], a[btr[i]]);
    for (int k = 1; k < N; k <<= 1) {
      for (int i = 0; i < N; i += 2 * k) {
        for (int j = 0; j < k; j++) {
          mint z = a[i + j + k] * basis[j + k];
          a[i + j + k] = a[i + j] - z;
          a[i + j] = a[i + j] + z;
        }
      }
    }
  }

  void pntt(vector<mint> &a) {
    int P = a.size();
    if (P <= 64) {
      dft(a);
      return;
    }
    if (rader.find(P) == end(rader)) rader[P] = new RaderNTT<mint>(P, len, w);
    rader[P]->ntt(a);
  }

  void ntt(vector<mint> &a) {
    assert(len % a.size() == 0);
    int N = (int)a.size();
    if (N <= 1) return;
    if (N <= 64) {
      dft(a);
      return;
    }

    int P = factor(N);
    if (P == N) {
      pntt(a);
      return;
    }
    if (P == 2) {
      P = 1 << __builtin_ctz(N);
      if (N == P) {
        ntt_base2(a);
        return;
      }
    }

    int Q = N / P;
    vector<mint> t(N), u(P);
    {
      vector<mint> s(Q);
      for (int p = 0, lN = len / N, d = 0; p < P; p++, d += lN) {
        for (int q = 0, qP = 0; q < Q; q++, qP += P) s[q] = a[qP + p];
        ntt(s);
        for (int r = 0, n = 0, pQ = p * Q; r < Q; ++r, n += d) {
          t[pQ + r] = w[n] * s[r];
        }
      }
    }
    for (int r = 0; r < Q; r++) {
      for (int p = 0, pQ = 0; p < P; p++, pQ += Q) u[p] = t[pQ + r];
      if (P <= 64)
        dft(u);
      else if (P & 1)
        pntt(u);
      else
        ntt_base2(u);
      for (int s = 0, sQ = 0; s < P; s++, sQ += Q) a[sQ + r] = u[s];
    }
  }

  void intt(vector<mint> &a) {
    reverse(begin(a) + 1, end(a));
    ntt(a);
    mint invn = mint(a.size()).inverse();
    for (auto &x : a) x *= invn;
  }

  vector<mint> multiply(const vector<mint> &a, const vector<mint> &b) {
    int N = (int)a.size() + (int)b.size() - 1;
    assert(N <= len);
    vector<mint> s(a), t(b);
    int l = *lower_bound(begin(divisors), end(divisors), N);
    s.resize(l, mint(0));
    t.resize(l, mint(0));
    ntt(s);
    ntt(t);
    for (int i = 0; i < l; i++) s[i] *= t[i];
    intt(s);
    s.resize(N);
    return s;
  }
};

/**
 * @brief Cooley-Tukey FFT Algorithm
 */
#line 2 "ntt/cooley-tukey-ntt.hpp"

#line 2 "ntt/rader-ntt.hpp"

#line 2 "math/constexpr-primitive-root.hpp"

constexpr unsigned int constexpr_primitive_root(unsigned int mod) {
  using u32 = unsigned int;
  using u64 = unsigned long long;
  if(mod == 2) return 1;
  u64 m = mod - 1, ds[32] = {}, idx = 0;
  for (u64 i = 2; i * i <= m; ++i) {
    if (m % i == 0) {
      ds[idx++] = i;
      while (m % i == 0) m /= i;
    }
  }
  if (m != 1) ds[idx++] = m;
  for (u32 _pr = 2, flg = true;; _pr++, flg = true) {
    for (u32 i = 0; i < idx && flg; ++i) {
      u64 a = _pr, b = (mod - 1) / ds[i], r = 1;
      for (; b; a = a * a % mod, b >>= 1)
        if (b & 1) r = r * a % mod;
      if (r == 1) flg = false;
    }
    if (flg == true) return _pr;
  }
}

#line 2 "ntt/arbitrary-ntt.hpp"

#line 2 "modint/montgomery-modint.hpp"

template <uint32_t mod>
struct LazyMontgomeryModInt {
  using mint = LazyMontgomeryModInt;
  using i32 = int32_t;
  using u32 = uint32_t;
  using u64 = uint64_t;

  static constexpr u32 get_r() {
    u32 ret = mod;
    for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret;
    return ret;
  }

  static constexpr u32 r = get_r();
  static constexpr u32 n2 = -u64(mod) % mod;
  static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30");
  static_assert((mod & 1) == 1, "invalid, mod % 2 == 0");
  static_assert(r * mod == 1, "this code has bugs.");

  u32 a;

  constexpr LazyMontgomeryModInt() : a(0) {}
  constexpr LazyMontgomeryModInt(const int64_t &b)
      : a(reduce(u64(b % mod + mod) * n2)){};

  static constexpr u32 reduce(const u64 &b) {
    return (b + u64(u32(b) * u32(-r)) * mod) >> 32;
  }

  constexpr mint &operator+=(const mint &b) {
    if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod;
    return *this;
  }

  constexpr mint &operator-=(const mint &b) {
    if (i32(a -= b.a) < 0) a += 2 * mod;
    return *this;
  }

  constexpr mint &operator*=(const mint &b) {
    a = reduce(u64(a) * b.a);
    return *this;
  }

  constexpr mint &operator/=(const mint &b) {
    *this *= b.inverse();
    return *this;
  }

  constexpr mint operator+(const mint &b) const { return mint(*this) += b; }
  constexpr mint operator-(const mint &b) const { return mint(*this) -= b; }
  constexpr mint operator*(const mint &b) const { return mint(*this) *= b; }
  constexpr mint operator/(const mint &b) const { return mint(*this) /= b; }
  constexpr bool operator==(const mint &b) const {
    return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
  }
  constexpr bool operator!=(const mint &b) const {
    return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
  }
  constexpr mint operator-() const { return mint() - mint(*this); }
  constexpr mint operator+() const { return mint(*this); }

  constexpr mint pow(u64 n) const {
    mint ret(1), mul(*this);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }

  constexpr mint inverse() const {
    int x = get(), y = mod, u = 1, v = 0, t = 0, tmp = 0;
    while (y > 0) {
      t = x / y;
      x -= t * y, u -= t * v;
      tmp = x, x = y, y = tmp;
      tmp = u, u = v, v = tmp;
    }
    return mint{u};
  }

  friend ostream &operator<<(ostream &os, const mint &b) {
    return os << b.get();
  }

  friend istream &operator>>(istream &is, mint &b) {
    int64_t t;
    is >> t;
    b = LazyMontgomeryModInt<mod>(t);
    return (is);
  }

  constexpr u32 get() const {
    u32 ret = reduce(a);
    return ret >= mod ? ret - mod : ret;
  }

  static constexpr u32 get_mod() { return mod; }
};
#line 2 "ntt/ntt.hpp"

template <typename mint>
struct NTT {
  static constexpr uint32_t get_pr() {
    uint32_t _mod = mint::get_mod();
    using u64 = uint64_t;
    u64 ds[32] = {};
    int idx = 0;
    u64 m = _mod - 1;
    for (u64 i = 2; i * i <= m; ++i) {
      if (m % i == 0) {
        ds[idx++] = i;
        while (m % i == 0) m /= i;
      }
    }
    if (m != 1) ds[idx++] = m;

    uint32_t _pr = 2;
    while (1) {
      int flg = 1;
      for (int i = 0; i < idx; ++i) {
        u64 a = _pr, b = (_mod - 1) / ds[i], r = 1;
        while (b) {
          if (b & 1) r = r * a % _mod;
          a = a * a % _mod;
          b >>= 1;
        }
        if (r == 1) {
          flg = 0;
          break;
        }
      }
      if (flg == 1) break;
      ++_pr;
    }
    return _pr;
  };

  static constexpr uint32_t mod = mint::get_mod();
  static constexpr uint32_t pr = get_pr();
  static constexpr int level = __builtin_ctzll(mod - 1);
  mint dw[level], dy[level];

  void setwy(int k) {
    mint w[level], y[level];
    w[k - 1] = mint(pr).pow((mod - 1) / (1 << k));
    y[k - 1] = w[k - 1].inverse();
    for (int i = k - 2; i > 0; --i)
      w[i] = w[i + 1] * w[i + 1], y[i] = y[i + 1] * y[i + 1];
    dw[1] = w[1], dy[1] = y[1], dw[2] = w[2], dy[2] = y[2];
    for (int i = 3; i < k; ++i) {
      dw[i] = dw[i - 1] * y[i - 2] * w[i];
      dy[i] = dy[i - 1] * w[i - 2] * y[i];
    }
  }

  NTT() { setwy(level); }

  void fft4(vector<mint> &a, int k) {
    if ((int)a.size() <= 1) return;
    if (k == 1) {
      mint a1 = a[1];
      a[1] = a[0] - a[1];
      a[0] = a[0] + a1;
      return;
    }
    if (k & 1) {
      int v = 1 << (k - 1);
      for (int j = 0; j < v; ++j) {
        mint ajv = a[j + v];
        a[j + v] = a[j] - ajv;
        a[j] += ajv;
      }
    }
    int u = 1 << (2 + (k & 1));
    int v = 1 << (k - 2 - (k & 1));
    mint one = mint(1);
    mint imag = dw[1];
    while (v) {
      // jh = 0
      {
        int j0 = 0;
        int j1 = v;
        int j2 = j1 + v;
        int j3 = j2 + v;
        for (; j0 < v; ++j0, ++j1, ++j2, ++j3) {
          mint t0 = a[j0], t1 = a[j1], t2 = a[j2], t3 = a[j3];
          mint t0p2 = t0 + t2, t1p3 = t1 + t3;
          mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag;
          a[j0] = t0p2 + t1p3, a[j1] = t0p2 - t1p3;
          a[j2] = t0m2 + t1m3, a[j3] = t0m2 - t1m3;
        }
      }
      // jh >= 1
      mint ww = one, xx = one * dw[2], wx = one;
      for (int jh = 4; jh < u;) {
        ww = xx * xx, wx = ww * xx;
        int j0 = jh * v;
        int je = j0 + v;
        int j2 = je + v;
        for (; j0 < je; ++j0, ++j2) {
          mint t0 = a[j0], t1 = a[j0 + v] * xx, t2 = a[j2] * ww,
               t3 = a[j2 + v] * wx;
          mint t0p2 = t0 + t2, t1p3 = t1 + t3;
          mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag;
          a[j0] = t0p2 + t1p3, a[j0 + v] = t0p2 - t1p3;
          a[j2] = t0m2 + t1m3, a[j2 + v] = t0m2 - t1m3;
        }
        xx *= dw[__builtin_ctzll((jh += 4))];
      }
      u <<= 2;
      v >>= 2;
    }
  }

  void ifft4(vector<mint> &a, int k) {
    if ((int)a.size() <= 1) return;
    if (k == 1) {
      mint a1 = a[1];
      a[1] = a[0] - a[1];
      a[0] = a[0] + a1;
      return;
    }
    int u = 1 << (k - 2);
    int v = 1;
    mint one = mint(1);
    mint imag = dy[1];
    while (u) {
      // jh = 0
      {
        int j0 = 0;
        int j1 = v;
        int j2 = v + v;
        int j3 = j2 + v;
        for (; j0 < v; ++j0, ++j1, ++j2, ++j3) {
          mint t0 = a[j0], t1 = a[j1], t2 = a[j2], t3 = a[j3];
          mint t0p1 = t0 + t1, t2p3 = t2 + t3;
          mint t0m1 = t0 - t1, t2m3 = (t2 - t3) * imag;
          a[j0] = t0p1 + t2p3, a[j2] = t0p1 - t2p3;
          a[j1] = t0m1 + t2m3, a[j3] = t0m1 - t2m3;
        }
      }
      // jh >= 1
      mint ww = one, xx = one * dy[2], yy = one;
      u <<= 2;
      for (int jh = 4; jh < u;) {
        ww = xx * xx, yy = xx * imag;
        int j0 = jh * v;
        int je = j0 + v;
        int j2 = je + v;
        for (; j0 < je; ++j0, ++j2) {
          mint t0 = a[j0], t1 = a[j0 + v], t2 = a[j2], t3 = a[j2 + v];
          mint t0p1 = t0 + t1, t2p3 = t2 + t3;
          mint t0m1 = (t0 - t1) * xx, t2m3 = (t2 - t3) * yy;
          a[j0] = t0p1 + t2p3, a[j2] = (t0p1 - t2p3) * ww;
          a[j0 + v] = t0m1 + t2m3, a[j2 + v] = (t0m1 - t2m3) * ww;
        }
        xx *= dy[__builtin_ctzll(jh += 4)];
      }
      u >>= 4;
      v <<= 2;
    }
    if (k & 1) {
      u = 1 << (k - 1);
      for (int j = 0; j < u; ++j) {
        mint ajv = a[j] - a[j + u];
        a[j] += a[j + u];
        a[j + u] = ajv;
      }
    }
  }

  void ntt(vector<mint> &a) {
    if ((int)a.size() <= 1) return;
    fft4(a, __builtin_ctz(a.size()));
  }

  void intt(vector<mint> &a) {
    if ((int)a.size() <= 1) return;
    ifft4(a, __builtin_ctz(a.size()));
    mint iv = mint(a.size()).inverse();
    for (auto &x : a) x *= iv;
  }

  vector<mint> multiply(const vector<mint> &a, const vector<mint> &b) {
    int l = a.size() + b.size() - 1;
    if (min<int>(a.size(), b.size()) <= 40) {
      vector<mint> s(l);
      for (int i = 0; i < (int)a.size(); ++i)
        for (int j = 0; j < (int)b.size(); ++j) s[i + j] += a[i] * b[j];
      return s;
    }
    int k = 2, M = 4;
    while (M < l) M <<= 1, ++k;
    setwy(k);
    vector<mint> s(M);
    for (int i = 0; i < (int)a.size(); ++i) s[i] = a[i];
    fft4(s, k);
    if (a.size() == b.size() && a == b) {
      for (int i = 0; i < M; ++i) s[i] *= s[i];
    } else {
      vector<mint> t(M);
      for (int i = 0; i < (int)b.size(); ++i) t[i] = b[i];
      fft4(t, k);
      for (int i = 0; i < M; ++i) s[i] *= t[i];
    }
    ifft4(s, k);
    s.resize(l);
    mint invm = mint(M).inverse();
    for (int i = 0; i < l; ++i) s[i] *= invm;
    return s;
  }

  void ntt_doubling(vector<mint> &a) {
    int M = (int)a.size();
    auto b = a;
    intt(b);
    mint r = 1, zeta = mint(pr).pow((mint::get_mod() - 1) / (M << 1));
    for (int i = 0; i < M; i++) b[i] *= r, r *= zeta;
    ntt(b);
    copy(begin(b), end(b), back_inserter(a));
  }
};
#line 5 "ntt/arbitrary-ntt.hpp"

namespace ArbitraryNTT {
using i64 = int64_t;
using u128 = __uint128_t;
constexpr int32_t m0 = 167772161;
constexpr int32_t m1 = 469762049;
constexpr int32_t m2 = 754974721;
using mint0 = LazyMontgomeryModInt<m0>;
using mint1 = LazyMontgomeryModInt<m1>;
using mint2 = LazyMontgomeryModInt<m2>;
constexpr int r01 = mint1(m0).inverse().get();
constexpr int r02 = mint2(m0).inverse().get();
constexpr int r12 = mint2(m1).inverse().get();
constexpr int r02r12 = i64(r02) * r12 % m2;
constexpr i64 w1 = m0;
constexpr i64 w2 = i64(m0) * m1;

template <typename T, typename submint>
vector<submint> mul(const vector<T> &a, const vector<T> &b) {
  static NTT<submint> ntt;
  vector<submint> s(a.size()), t(b.size());
  for (int i = 0; i < (int)a.size(); ++i) s[i] = i64(a[i] % submint::get_mod());
  for (int i = 0; i < (int)b.size(); ++i) t[i] = i64(b[i] % submint::get_mod());
  return ntt.multiply(s, t);
}

template <typename T>
vector<int> multiply(const vector<T> &s, const vector<T> &t, int mod) {
  auto d0 = mul<T, mint0>(s, t);
  auto d1 = mul<T, mint1>(s, t);
  auto d2 = mul<T, mint2>(s, t);
  int n = d0.size();
  vector<int> ret(n);
  const int W1 = w1 % mod;
  const int W2 = w2 % mod;
  for (int i = 0; i < n; i++) {
    int n1 = d1[i].get(), n2 = d2[i].get(), a = d0[i].get();
    int b = i64(n1 + m1 - a) * r01 % m1;
    int c = (i64(n2 + m2 - a) * r02r12 + i64(m2 - b) * r12) % m2;
    ret[i] = (i64(a) + i64(b) * W1 + i64(c) * W2) % mod;
  }
  return ret;
}

template <typename mint>
vector<mint> multiply(const vector<mint> &a, const vector<mint> &b) {
  if (a.size() == 0 && b.size() == 0) return {};
  if (min<int>(a.size(), b.size()) < 128) {
    vector<mint> ret(a.size() + b.size() - 1);
    for (int i = 0; i < (int)a.size(); ++i)
      for (int j = 0; j < (int)b.size(); ++j) ret[i + j] += a[i] * b[j];
    return ret;
  }
  vector<int> s(a.size()), t(b.size());
  for (int i = 0; i < (int)a.size(); ++i) s[i] = a[i].get();
  for (int i = 0; i < (int)b.size(); ++i) t[i] = b[i].get();
  vector<int> u = multiply<int>(s, t, mint::get_mod());
  vector<mint> ret(u.size());
  for (int i = 0; i < (int)u.size(); ++i) ret[i] = mint(u[i]);
  return ret;
}

template <typename T>
vector<u128> multiply_u128(const vector<T> &s, const vector<T> &t) {
  if (s.size() == 0 && t.size() == 0) return {};
  if (min<int>(s.size(), t.size()) < 128) {
    vector<u128> ret(s.size() + t.size() - 1);
    for (int i = 0; i < (int)s.size(); ++i)
      for (int j = 0; j < (int)t.size(); ++j) ret[i + j] += i64(s[i]) * t[j];
    return ret;
  }
  auto d0 = mul<T, mint0>(s, t);
  auto d1 = mul<T, mint1>(s, t);
  auto d2 = mul<T, mint2>(s, t);
  int n = d0.size();
  vector<u128> ret(n);
  for (int i = 0; i < n; i++) {
    i64 n1 = d1[i].get(), n2 = d2[i].get();
    i64 a = d0[i].get();
    i64 b = (n1 + m1 - a) * r01 % m1;
    i64 c = ((n2 + m2 - a) * r02r12 + (m2 - b) * r12) % m2;
    ret[i] = a + b * w1 + u128(c) * w2;
  }
  return ret;
}
}  // namespace ArbitraryNTT
#line 5 "ntt/rader-ntt.hpp"

template <typename mint>
struct RaderNTT {
  int p, pr, len;
  const vector<mint>& w;
  vector<int> prs, iprs;
  RaderNTT() {}
  RaderNTT(int _p, int _len, const vector<mint>& _w)
      : p(_p), pr(constexpr_primitive_root(p)), len(_len), w(_w) {
    prs.resize(p - 1);
    iprs.resize(p, -1);
    for (int i = 0; i < p - 1; i++) prs[i] = i ? prs[i - 1] * pr % p : 1;
    for (int i = 0; i < p - 1; i++) iprs[prs[i]] = i;
  }

  void ntt(vector<mint>& a) {
    vector<mint> s(p - 1), t(p - 1);
    for (int i = 0; i < p - 1; i++) s[i] = a[prs[i]];
    for (int i = 0, ldp = len / p; i < p - 1; i++)
      t[i] = w[ldp * prs[i ? p - 1 - i : 0]];
    vector<mint> u = ArbitraryNTT::multiply(s, t);
    s.resize(p);
    fill(begin(s), end(s), a[0]);
    for (int i = 1; i < p; i++) s[0] += a[i];
    for (int i = 0, y = 0; i < (int)u.size(); i++) {
      s[prs[y]] += u[i];
      if (--y < 0) y += p - 1;
    }
    swap(a, s);
  }
};

/**
 * @brief Rader's FFT Algorithm
 */
#line 4 "ntt/cooley-tukey-ntt.hpp"

template <typename mint>
struct ArbitraryLengthNTT {
  using i64 = long long;

  int factor(int n) {
    for (int i = 2; i * i <= n; i++)
      if (n % i == 0) return i;
    return n;
  }

  vector<int> divisor(int n) {
    vector<int> ret;
    for (int i = 2; i * i <= n; i++) {
      if (n % i == 0) {
        ret.push_back(i);
        ret.push_back(n / i);
      }
    }
    ret.push_back(n);
    sort(begin(ret), end(ret));
    ret.erase(unique(begin(ret), end(ret)), end(ret));
    return ret;
  }

  int len;
  vector<mint> w;
  vector<int> divisors;
  map<int, RaderNTT<mint> *> rader;

  ArbitraryLengthNTT(int len_ = -1) { set_len(len_); }

  void set_len(int len_ = -1) {
    int mod = mint::get_mod();
    if ((len = len_) == -1) len = mod - 1;
    if (mod >= 3 && len <= 1) len = 2;
    while ((mod - 1) % len != 0) ++len;
    mint pr = mint(constexpr_primitive_root(mod)).pow((mod - 1) / len);
    w.resize(len + 1);
    for (int i = 0; i <= len; i++) w[i] = i ? w[i - 1] * pr : mint(1);
    divisors = divisor(len);
  }

  void dft(vector<mint> &a) {
    int N = a.size();
    if (N == 2) {
      mint a01 = a[0] + a[1];
      a[1] = a[0] - a[1];
      a[0] = a01;
      return;
    }
    int d = len / N;
    vector<mint> b(N);
    for (int i = 0, dk = 0; i < N; i++, dk += d) {
      for (int j = 0, k = 0; j < N; j++) {
        b[j] += a[i] * w[k];
        if ((k += dk) >= len) k -= len;
      }
    }
    swap(a, b);
  }

  void ntt_base2(vector<mint> &a) {
    static vector<int> btr;
    int N = a.size();
    assert(N % 2 == 0);
    if (btr.size() != a.size()) {
      btr.resize(N);
      int b = __builtin_ctz(N);
      assert(N == (1 << b));
      for (int i = 0; i < N; i++) {
        btr[i] = (btr[i >> 1] >> 1) + ((i & 1) << (b - 1));
      }
    }
    static vector<mint> basis;
    if (basis.size() < a.size()) {
      basis.resize(N);
      mint b = w[len / N];
      for (int i = N >> 1; i > 0; i >>= 1) {
        mint c = 1;
        for (int j = 0; j < i; ++j) {
          basis[i + j] = c;
          c *= b;
        }
        b *= b;
      }
    }
    for (int i = 0; i < N; i++)
      if (i < btr[i]) swap(a[i], a[btr[i]]);
    for (int k = 1; k < N; k <<= 1) {
      for (int i = 0; i < N; i += 2 * k) {
        for (int j = 0; j < k; j++) {
          mint z = a[i + j + k] * basis[j + k];
          a[i + j + k] = a[i + j] - z;
          a[i + j] = a[i + j] + z;
        }
      }
    }
  }

  void pntt(vector<mint> &a) {
    int P = a.size();
    if (P <= 64) {
      dft(a);
      return;
    }
    if (rader.find(P) == end(rader)) rader[P] = new RaderNTT<mint>(P, len, w);
    rader[P]->ntt(a);
  }

  void ntt(vector<mint> &a) {
    assert(len % a.size() == 0);
    int N = (int)a.size();
    if (N <= 1) return;
    if (N <= 64) {
      dft(a);
      return;
    }

    int P = factor(N);
    if (P == N) {
      pntt(a);
      return;
    }
    if (P == 2) {
      P = 1 << __builtin_ctz(N);
      if (N == P) {
        ntt_base2(a);
        return;
      }
    }

    int Q = N / P;
    vector<mint> t(N), u(P);
    {
      vector<mint> s(Q);
      for (int p = 0, lN = len / N, d = 0; p < P; p++, d += lN) {
        for (int q = 0, qP = 0; q < Q; q++, qP += P) s[q] = a[qP + p];
        ntt(s);
        for (int r = 0, n = 0, pQ = p * Q; r < Q; ++r, n += d) {
          t[pQ + r] = w[n] * s[r];
        }
      }
    }
    for (int r = 0; r < Q; r++) {
      for (int p = 0, pQ = 0; p < P; p++, pQ += Q) u[p] = t[pQ + r];
      if (P <= 64)
        dft(u);
      else if (P & 1)
        pntt(u);
      else
        ntt_base2(u);
      for (int s = 0, sQ = 0; s < P; s++, sQ += Q) a[sQ + r] = u[s];
    }
  }

  void intt(vector<mint> &a) {
    reverse(begin(a) + 1, end(a));
    ntt(a);
    mint invn = mint(a.size()).inverse();
    for (auto &x : a) x *= invn;
  }

  vector<mint> multiply(const vector<mint> &a, const vector<mint> &b) {
    int N = (int)a.size() + (int)b.size() - 1;
    assert(N <= len);
    vector<mint> s(a), t(b);
    int l = *lower_bound(begin(divisors), end(divisors), N);
    s.resize(l, mint(0));
    t.resize(l, mint(0));
    ntt(s);
    ntt(t);
    for (int i = 0; i < l; i++) s[i] *= t[i];
    intt(s);
    s.resize(N);
    return s;
  }
};

/**
 * @brief Cooley-Tukey FFT Algorithm
 */
Back to top page