半環ライブラリ
(math/semiring.hpp)
- View this file on GitHub
- Last update: 2021-01-01 23:05:31+09:00
- Include:
#include "math/semiring.hpp"
半環ライブラリ
概要
半環(semiring, rig)とは集合$R$と二つの二項演算(加法$+$と乗法$\cdot$)からなる代数的構造である。$R,+,\cdot$は以下の関係を満たしている。
- $(R, +)$は$0$を単位元とする可換モノイドをなす
- $(R, \cdot)$は$1$を単位元とするモノイドをなす
- $+,\cdot$に対して分配法則が成り立つ
- $\forall r\in R$を$0$倍すると$0$になる
特にmax-plus半環/min-plus半環はトロピカル半環と呼ばれていて、グラフ上の最短経路の計算などに利用される。
テンプレート
-
U
: 集合$R$ -
add
: 二項演算$(R,+)$ -
mul
: 二項演算$(R,\cdot)$ -
i0()
: 単位元$0$ -
i1()
: 単位元$1$
// max-plus semiring
/**
using U = long long;
U add(U a, U b) { return max(a, b); }
U mul(U a, U b) { return a + b; }
U i0() { return -infLL; }
U i1() { return 0; }
using rig = semiring<U, add, mul, i0, i1>;
//*/
// min-plus semiring
/**
using U = long long;
U add(U a, U b) { return min(a, b); }
U mul(U a, U b) { return a + b; }
U i0() { return infLL; }
U i1() { return 0; }
using rig = semiring<U, add, mul, i0, i1>;
//*/
// max(x + a, b)
// verify: DDCC2020-final-b
/**
using U = pair<long long, long long>;
U add(U a, U b) {
long long f = max(a.first, b.first);
long long g = max(a.second, b.second);
return U(f, g);
}
U mul(U a, U b) {
long long f = a.first + b.first;
long long g = max(a.second + b.first, b.second);
return U(f, g);
}
U i0() { return U(-infLL, -infLL); }
U i1() { return U(0, -infLL); }
using rig = semiring<U, add, mul, i0, i1>;
//*/
// xor-and semiring
/**
using U = unsigned long long;
U add(U a, U b) { return a ^ b; }
U mul(U a, U b) { return a & b; }
U i0() { return 0; }
U i1() { return U(-1); }
using rig = semiring<U, add, mul, i0, i1>;
//*/
Verified with
verify/verify-unit-test/semiring.test.cpp
verify/verify-yuki/yuki-1340-semiring.test.cpp
verify/verify-yuki/yuki-1460.test.cpp
Code
#pragma once
template <typename T, T (*add)(T, T), T (*mul)(T, T), T (*I0)(), T (*I1)()>
struct semiring {
T x;
semiring() : x(I0()) {}
semiring(T y) : x(y) {}
static T id0() { return I0(); }
static T id1() { return I1(); }
semiring &operator+=(const semiring &p) {
if (x == I0()) return *this = p;
if (p.x == I0()) return *this;
return *this = add(x, p.x);
}
semiring &operator*=(const semiring &p) {
if (x == I0() || p.x == I0()) return *this = I0();
if (x == I1()) return *this = p;
if (p.x == I1()) return *this;
return *this = mul(x, p.x);
}
semiring operator+(const semiring &p) const { return semiring(*this) += p; }
semiring operator*(const semiring &p) const { return semiring(*this) *= p; }
bool operator==(const semiring &p) const { return x == p.x; }
bool operator!=(const semiring &p) const { return x != p.x; }
friend ostream &operator<<(ostream &os, const semiring &p) {
return os << p.x;
}
};
template <typename rig, int N>
struct Mat {
using Array = array<array<rig, N>, N>;
Array A;
Mat() {
for (int i = 0; i < N; i++) A[i].fill(rig::id0());
}
int height() const { return N; }
int width() const { return N; }
inline const array<rig, N> &operator[](int k) const { return A[k]; }
inline array<rig, N> &operator[](int k) { return A[k]; }
static Mat I() {
Mat m;
for (int i = 0; i < N; i++) m[i][i] = rig::id1();
return m;
}
Mat &operator+=(const Mat &B) {
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++) A[i][j] += B[i][j];
return (*this);
}
Mat &operator*=(const Mat &B) {
Mat C;
for (int i = 0; i < N; i++)
for (int k = 0; k < N; k++)
for (int j = 0; j < N; j++) C[i][j] += A[i][k] * B[k][j];
A.swap(C.A);
return (*this);
}
Mat &operator^=(long long k) {
Mat B = Mat::I();
for (; k; *this *= *this, k >>= 1)
if (k & 1) B *= *this;
A.swap(B.A);
return (*this);
}
Mat operator+(const Mat &B) const { return (Mat(*this) += B); }
Mat operator*(const Mat &B) const { return (Mat(*this) *= B); }
Mat operator^(long long k) const { return (Mat(*this) ^= k); }
friend ostream &operator<<(ostream &os, Mat &p) {
for (int i = 0; i < N; i++) {
os << "[";
for (int j = 0; j < N; j++) {
os << p[i][j].x << (j == N - 1 ? "]\n" : ",");
}
}
return (os);
}
};
/**
* @brief 半環ライブラリ
* @docs docs/math/semiring.md
*/
#line 2 "math/semiring.hpp"
template <typename T, T (*add)(T, T), T (*mul)(T, T), T (*I0)(), T (*I1)()>
struct semiring {
T x;
semiring() : x(I0()) {}
semiring(T y) : x(y) {}
static T id0() { return I0(); }
static T id1() { return I1(); }
semiring &operator+=(const semiring &p) {
if (x == I0()) return *this = p;
if (p.x == I0()) return *this;
return *this = add(x, p.x);
}
semiring &operator*=(const semiring &p) {
if (x == I0() || p.x == I0()) return *this = I0();
if (x == I1()) return *this = p;
if (p.x == I1()) return *this;
return *this = mul(x, p.x);
}
semiring operator+(const semiring &p) const { return semiring(*this) += p; }
semiring operator*(const semiring &p) const { return semiring(*this) *= p; }
bool operator==(const semiring &p) const { return x == p.x; }
bool operator!=(const semiring &p) const { return x != p.x; }
friend ostream &operator<<(ostream &os, const semiring &p) {
return os << p.x;
}
};
template <typename rig, int N>
struct Mat {
using Array = array<array<rig, N>, N>;
Array A;
Mat() {
for (int i = 0; i < N; i++) A[i].fill(rig::id0());
}
int height() const { return N; }
int width() const { return N; }
inline const array<rig, N> &operator[](int k) const { return A[k]; }
inline array<rig, N> &operator[](int k) { return A[k]; }
static Mat I() {
Mat m;
for (int i = 0; i < N; i++) m[i][i] = rig::id1();
return m;
}
Mat &operator+=(const Mat &B) {
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++) A[i][j] += B[i][j];
return (*this);
}
Mat &operator*=(const Mat &B) {
Mat C;
for (int i = 0; i < N; i++)
for (int k = 0; k < N; k++)
for (int j = 0; j < N; j++) C[i][j] += A[i][k] * B[k][j];
A.swap(C.A);
return (*this);
}
Mat &operator^=(long long k) {
Mat B = Mat::I();
for (; k; *this *= *this, k >>= 1)
if (k & 1) B *= *this;
A.swap(B.A);
return (*this);
}
Mat operator+(const Mat &B) const { return (Mat(*this) += B); }
Mat operator*(const Mat &B) const { return (Mat(*this) *= B); }
Mat operator^(long long k) const { return (Mat(*this) ^= k); }
friend ostream &operator<<(ostream &os, Mat &p) {
for (int i = 0; i < N; i++) {
os << "[";
for (int j = 0; j < N; j++) {
os << p[i][j].x << (j == N - 1 ? "]\n" : ",");
}
}
return (os);
}
};
/**
* @brief 半環ライブラリ
* @docs docs/math/semiring.md
*/