Nyaan's Library

This documentation is automatically generated by online-judge-tools/verification-helper

View on GitHub

:heavy_check_mark: graph/functional-graph.hpp

Depends on

Verified with

Code

#pragma once

#include <cassert>
#include <utility>
#include <vector>
using namespace std;

#include "../data-structure/union-find.hpp"
#include "../internal/internal-type-traits.hpp"
#include "graph-template.hpp"

namespace FunctionalGraphImpl {

ENABLE_HAS_VAR(cost)

template <typename T = int>
struct FunctionalGraph {
  int N;
  WeightedGraph<T> g;
  vector<int> to, represent;
  vector<T> weight;

  FunctionalGraph() = default;

  FunctionalGraph(int n, const vector<int>& adj,
                  const vector<T>& w = vector<int>{})
      : N(n), g(N + 1), to(N + 1, -1), represent(N + 1, -1), weight(N + 1) {
    assert((int)adj.size() == N);
    assert((int)w.size() == N or w.empty());
    for (auto& x : adj) assert(0 <= x and x < N);

    UnionFind uf(N);
    for (int i = 0; i < N; i++) {
      int j = adj[i];
      to[i] = j, weight[i] = w.empty() ? T{1} : w[i];
      if (uf.same(i, j)) {
        g[N].emplace_back(N, i, weight[i]);
      } else {
        uf.unite(i, j);
        g[j].emplace_back(j, i, weight[i]);
      }
    }
    calc_represent(N, -1);
  }

  // _g は無向グラフ
  template <typename G>
  FunctionalGraph(int n, const G& _g)
      : N(n), g(N + 1), to(N + 1, -1), represent(N + 1, -1), weight(N + 1) {
    constexpr bool cost_flag = has_cost_v<typename G::value_type::value_type>;
    WeightedGraph<T> h(n);
    UnionFind uf(N);
    for (int i = 0; i < N; i++) {
      for (auto& j : _g[i]) {
        if (i > j) continue;
        T cost;
        if constexpr (cost_flag) {
          cost = j.cost;
        } else {
          cost = 1;
        }
        if (uf.same(i, j)) {
          // i -> j 向きということにして, i を根とする
          g[N].emplace_back(N, i, 0);
          to[i] = j, weight[i] = cost;
        } else {
          uf.unite(i, j);
          h[i].emplace_back(i, j, cost);
          h[j].emplace_back(j, i, cost);
        }
      }
    }

    auto dfs = [&](auto rc, int c, int p) -> void {
      for (auto& d : h[c]) {
        if (d == p) continue;
        T cost;
        if constexpr (cost_flag) {
          cost = d.cost;
        } else {
          cost = 1;
        }
        to[d] = c, weight[d] = cost;
        g[c].emplace_back(c, d, cost);
        rc(rc, d, c);
      }
    };
    for (auto& r : g[N]) dfs(dfs, r, -1);

    calc_represent(N, -1);
  }

  vector<vector<int>> get_loops() const {
    vector<vector<int>> res;
    for (auto r : g[N]) {
      vector<int> cur{r};
      for (int i = to[r]; i != r; i = to[i]) {
        cur.push_back(i);
      }
      res.push_back(cur);
    }
    return res;
  }

  // (u, {weight of u-v}) (v, {weight of v-w}), (w, ...) ...
  vector<vector<pair<int, T>>> get_loops_with_weight() const {
    vector<vector<pair<int, T>>> res;
    for (auto r : g[N]) {
      vector<pair<int, T>> cur{make_pair(r, weight[r])};
      for (int i = to[r]; i != r; i = to[i]) {
        cur.emplace_back(i, weight[i]);
      }
      res.push_back(cur);
    }
    return res;
  }

 private:
  void calc_represent(int c, int r) {
    represent[c] = r;
    for (auto& d : g[c]) calc_represent(d, r == -1 ? d : r);
  }
};

}  // namespace FunctionalGraphImpl

using FunctionalGraphImpl::FunctionalGraph;
#line 2 "graph/functional-graph.hpp"

#include <cassert>
#include <utility>
#include <vector>
using namespace std;

#line 2 "data-structure/union-find.hpp"

struct UnionFind {
  vector<int> data;
  UnionFind(int N) : data(N, -1) {}

  int find(int k) { return data[k] < 0 ? k : data[k] = find(data[k]); }

  int unite(int x, int y) {
    if ((x = find(x)) == (y = find(y))) return false;
    if (data[x] > data[y]) swap(x, y);
    data[x] += data[y];
    data[y] = x;
    return true;
  }

  // f ... merge function
  template<typename F>
  int unite(int x, int y,const F &f) {
    if ((x = find(x)) == (y = find(y))) return false;
    if (data[x] > data[y]) swap(x, y);
    data[x] += data[y];
    data[y] = x;
    f(x, y);
    return true;
  }

  int size(int k) { return -data[find(k)]; }

  int same(int x, int y) { return find(x) == find(y); }
};

/**
 * @brief Union Find(Disjoint Set Union)
 * @docs docs/data-structure/union-find.md
 */
#line 2 "internal/internal-type-traits.hpp"

#include <type_traits>
using namespace std;

namespace internal {
template <typename T>
using is_broadly_integral =
    typename conditional_t<is_integral_v<T> || is_same_v<T, __int128_t> ||
                               is_same_v<T, __uint128_t>,
                           true_type, false_type>::type;

template <typename T>
using is_broadly_signed =
    typename conditional_t<is_signed_v<T> || is_same_v<T, __int128_t>,
                           true_type, false_type>::type;

template <typename T>
using is_broadly_unsigned =
    typename conditional_t<is_unsigned_v<T> || is_same_v<T, __uint128_t>,
                           true_type, false_type>::type;

#define ENABLE_VALUE(x) \
  template <typename T> \
  constexpr bool x##_v = x<T>::value;

ENABLE_VALUE(is_broadly_integral);
ENABLE_VALUE(is_broadly_signed);
ENABLE_VALUE(is_broadly_unsigned);
#undef ENABLE_VALUE

#define ENABLE_HAS_TYPE(var)                                   \
  template <class, class = void>                               \
  struct has_##var : false_type {};                            \
  template <class T>                                           \
  struct has_##var<T, void_t<typename T::var>> : true_type {}; \
  template <class T>                                           \
  constexpr auto has_##var##_v = has_##var<T>::value;

#define ENABLE_HAS_VAR(var)                                     \
  template <class, class = void>                                \
  struct has_##var : false_type {};                             \
  template <class T>                                            \
  struct has_##var<T, void_t<decltype(T::var)>> : true_type {}; \
  template <class T>                                            \
  constexpr auto has_##var##_v = has_##var<T>::value;

}  // namespace internal
#line 2 "graph/graph-template.hpp"

template <typename T>
struct edge {
  int src, to;
  T cost;

  edge(int _to, T _cost) : src(-1), to(_to), cost(_cost) {}
  edge(int _src, int _to, T _cost) : src(_src), to(_to), cost(_cost) {}

  edge &operator=(const int &x) {
    to = x;
    return *this;
  }

  operator int() const { return to; }
};
template <typename T>
using Edges = vector<edge<T>>;
template <typename T>
using WeightedGraph = vector<Edges<T>>;
using UnweightedGraph = vector<vector<int>>;

// Input of (Unweighted) Graph
UnweightedGraph graph(int N, int M = -1, bool is_directed = false,
                      bool is_1origin = true) {
  UnweightedGraph g(N);
  if (M == -1) M = N - 1;
  for (int _ = 0; _ < M; _++) {
    int x, y;
    cin >> x >> y;
    if (is_1origin) x--, y--;
    g[x].push_back(y);
    if (!is_directed) g[y].push_back(x);
  }
  return g;
}

// Input of Weighted Graph
template <typename T>
WeightedGraph<T> wgraph(int N, int M = -1, bool is_directed = false,
                        bool is_1origin = true) {
  WeightedGraph<T> g(N);
  if (M == -1) M = N - 1;
  for (int _ = 0; _ < M; _++) {
    int x, y;
    cin >> x >> y;
    T c;
    cin >> c;
    if (is_1origin) x--, y--;
    g[x].emplace_back(x, y, c);
    if (!is_directed) g[y].emplace_back(y, x, c);
  }
  return g;
}

// Input of Edges
template <typename T>
Edges<T> esgraph([[maybe_unused]] int N, int M, int is_weighted = true,
                 bool is_1origin = true) {
  Edges<T> es;
  for (int _ = 0; _ < M; _++) {
    int x, y;
    cin >> x >> y;
    T c;
    if (is_weighted)
      cin >> c;
    else
      c = 1;
    if (is_1origin) x--, y--;
    es.emplace_back(x, y, c);
  }
  return es;
}

// Input of Adjacency Matrix
template <typename T>
vector<vector<T>> adjgraph(int N, int M, T INF, int is_weighted = true,
                           bool is_directed = false, bool is_1origin = true) {
  vector<vector<T>> d(N, vector<T>(N, INF));
  for (int _ = 0; _ < M; _++) {
    int x, y;
    cin >> x >> y;
    T c;
    if (is_weighted)
      cin >> c;
    else
      c = 1;
    if (is_1origin) x--, y--;
    d[x][y] = c;
    if (!is_directed) d[y][x] = c;
  }
  return d;
}

/**
 * @brief グラフテンプレート
 * @docs docs/graph/graph-template.md
 */
#line 11 "graph/functional-graph.hpp"

namespace FunctionalGraphImpl {

ENABLE_HAS_VAR(cost)

template <typename T = int>
struct FunctionalGraph {
  int N;
  WeightedGraph<T> g;
  vector<int> to, represent;
  vector<T> weight;

  FunctionalGraph() = default;

  FunctionalGraph(int n, const vector<int>& adj,
                  const vector<T>& w = vector<int>{})
      : N(n), g(N + 1), to(N + 1, -1), represent(N + 1, -1), weight(N + 1) {
    assert((int)adj.size() == N);
    assert((int)w.size() == N or w.empty());
    for (auto& x : adj) assert(0 <= x and x < N);

    UnionFind uf(N);
    for (int i = 0; i < N; i++) {
      int j = adj[i];
      to[i] = j, weight[i] = w.empty() ? T{1} : w[i];
      if (uf.same(i, j)) {
        g[N].emplace_back(N, i, weight[i]);
      } else {
        uf.unite(i, j);
        g[j].emplace_back(j, i, weight[i]);
      }
    }
    calc_represent(N, -1);
  }

  // _g は無向グラフ
  template <typename G>
  FunctionalGraph(int n, const G& _g)
      : N(n), g(N + 1), to(N + 1, -1), represent(N + 1, -1), weight(N + 1) {
    constexpr bool cost_flag = has_cost_v<typename G::value_type::value_type>;
    WeightedGraph<T> h(n);
    UnionFind uf(N);
    for (int i = 0; i < N; i++) {
      for (auto& j : _g[i]) {
        if (i > j) continue;
        T cost;
        if constexpr (cost_flag) {
          cost = j.cost;
        } else {
          cost = 1;
        }
        if (uf.same(i, j)) {
          // i -> j 向きということにして, i を根とする
          g[N].emplace_back(N, i, 0);
          to[i] = j, weight[i] = cost;
        } else {
          uf.unite(i, j);
          h[i].emplace_back(i, j, cost);
          h[j].emplace_back(j, i, cost);
        }
      }
    }

    auto dfs = [&](auto rc, int c, int p) -> void {
      for (auto& d : h[c]) {
        if (d == p) continue;
        T cost;
        if constexpr (cost_flag) {
          cost = d.cost;
        } else {
          cost = 1;
        }
        to[d] = c, weight[d] = cost;
        g[c].emplace_back(c, d, cost);
        rc(rc, d, c);
      }
    };
    for (auto& r : g[N]) dfs(dfs, r, -1);

    calc_represent(N, -1);
  }

  vector<vector<int>> get_loops() const {
    vector<vector<int>> res;
    for (auto r : g[N]) {
      vector<int> cur{r};
      for (int i = to[r]; i != r; i = to[i]) {
        cur.push_back(i);
      }
      res.push_back(cur);
    }
    return res;
  }

  // (u, {weight of u-v}) (v, {weight of v-w}), (w, ...) ...
  vector<vector<pair<int, T>>> get_loops_with_weight() const {
    vector<vector<pair<int, T>>> res;
    for (auto r : g[N]) {
      vector<pair<int, T>> cur{make_pair(r, weight[r])};
      for (int i = to[r]; i != r; i = to[i]) {
        cur.emplace_back(i, weight[i]);
      }
      res.push_back(cur);
    }
    return res;
  }

 private:
  void calc_represent(int c, int r) {
    represent[c] = r;
    for (auto& d : g[c]) calc_represent(d, r == -1 ? d : r);
  }
};

}  // namespace FunctionalGraphImpl

using FunctionalGraphImpl::FunctionalGraph;
Back to top page