多変数形式的冪級数ライブラリ
(fps/multivariate-fps.hpp)
Depends on
Verified with
Code
#pragma once
#include <algorithm>
#include <cassert>
#include <vector>
using namespace std;
#include "../modulo/binomial.hpp"
#include "../ntt/multivariate-multiplication.hpp"
#include "formal-power-series.hpp"
// FFT mod でないと使えない
// f.size() != (base の総積) でも動くが, 二項演算は長さが等しい列同士しかダメ
// 添え字アクセスは operator() を使う
template <typename mint>
struct MultivariateFormalPowerSeries {
using mfps = MultivariateFormalPowerSeries<mint>;
using fps = FormalPowerSeries<mint>;
fps f;
vector<int> base;
MultivariateFormalPowerSeries() = default;
MultivariateFormalPowerSeries(const vector<int>& _base) : base(_base) {
int n = 1;
for (auto& x : base) n *= x;
f.resize(n);
}
MultivariateFormalPowerSeries(const fps& _f, const vector<int>& _base)
: f(_f), base(_base) {}
friend ostream& operator<<(ostream& os, const mfps& rhs) {
os << "[ ";
for (int i = 0; i < (int)rhs.f.size(); i++) {
os << rhs.f[i] << (i + 1 == (int)rhs.f.size() ? "" : ", ");
}
return os << " ]";
}
long long _id(int) { return 0; }
template <typename Head, typename... Tail>
long long _id(int i, Head&& head, Tail&&... tail) {
assert(i < (int)base.size() && (int)head < base[i]);
return head + _id(i + 1, std::forward<Tail>(tail)...) * base[i];
}
template <typename... Args>
long long id(Args&&... args) {
return _id(0, std::forward<Args>(args)...);
}
template <typename... Args>
mint& operator()(Args&&... args) {
return f[id(std::forward<Args>(args)...)];
}
mfps& operator+=(const mfps& rhs) {
assert(base == rhs.base && f.size() == rhs.f.size());
for (int i = 0; i < (int)f.size(); i++) f[i] += rhs.f[i];
return *this;
}
mfps& operator-=(const mfps& rhs) {
assert(base == rhs.base && f.size() == rhs.f.size());
for (int i = 0; i < (int)f.size(); i++) f[i] -= rhs.f[i];
return *this;
}
mfps& operator*=(const mfps& rhs) {
assert(base == rhs.base && f.size() == rhs.f.size());
f = multivariate_multiplication(f, rhs.f, base);
return *this;
}
mfps& operator/=(const mfps& rhs) {
assert(base == rhs.base);
assert(f.size() == rhs.f.size());
return (*this) *= rhs.inv();
}
mfps& operator+=(const mint& rhs) {
assert(!f.empty());
f[0] += rhs;
return *this;
}
mfps& operator-=(const mint& rhs) {
assert(!f.empty());
f[0] -= rhs;
return *this;
}
mfps& operator*=(const mint& rhs) {
for (auto& x : f) x *= rhs;
return *this;
}
mfps& operator/=(const mint& rhs) {
for (auto& x : f) x /= rhs;
return *this;
}
mfps operator+(const mfps& rhs) const { return mfps{*this} += rhs; }
mfps operator-(const mfps& rhs) const { return mfps{*this} -= rhs; }
mfps operator*(const mfps& rhs) const { return mfps{*this} *= rhs; }
mfps operator/(const mfps& rhs) const { return mfps{*this} /= rhs; }
mfps operator+(const mint& rhs) const { return mfps{*this} += rhs; }
mfps operator-(const mint& rhs) const { return mfps{*this} -= rhs; }
mfps operator*(const mint& rhs) const { return mfps{*this} *= rhs; }
mfps operator/(const mint& rhs) const { return mfps{*this} /= rhs; }
mfps operator+() const { return mfps{*this}; }
mfps operator-() const { return mfps{-f, base}; }
friend bool operator==(const mfps& lhs, const mfps& rhs) {
return lhs.f == rhs.f && lhs.base == rhs.base;
}
friend bool operator!=(const mfps& lhs, const mfps& rhs) {
return lhs.f != rhs.f || lhs.base != rhs.base;
}
mfps diff() const {
mfps g{*this};
for (int i = 0; i < (int)g.f.size(); i++) g.f[i] *= i;
return g;
}
mfps integral() const {
static Binomial<mint> binom;
mfps g{*this};
for (int i = 1; i < (int)g.f.size(); i++) g.f[i] *= binom.inv(i);
return g;
}
mfps inv() const {
assert(f[0] != 0);
if (base.empty()) return mfps{fps{f[0].inverse()}, base};
int n = f.size(), s = base.size(), W = 1;
while (W < 2 * n) W *= 2;
vector<int> chi(W);
for (int i = 0; i < W; i++) {
int x = i;
for (int j = 0; j < s - 1; j++) chi[i] += (x /= base[j]);
chi[i] %= s;
}
auto hadamard_prod = [&s](vector<fps>& F, vector<fps>& G, vector<fps>& H) {
fps a(s);
for (int k = 0; k < (int)F[0].size(); k++) {
fill(begin(a), end(a), typename fps::value_type());
for (int i = 0; i < s; i++)
for (int j = 0; j < s; j++) {
a[i + j - (i + j >= s ? s : 0)] += F[i][k] * G[j][k];
}
for (int i = 0; i < s; i++) H[i][k] = a[i];
}
};
fps g(W);
g[0] = f[0].inverse();
for (int d = 1; d < n; d *= 2) {
vector<fps> F(s, fps(2 * d)), G(s, fps(2 * d)), H(s, fps(2 * d));
for (int j = 0; j < min((int)f.size(), 2 * d); j++) F[chi[j]][j] = f[j];
for (int j = 0; j < d; j++) G[chi[j]][j] = g[j];
for (auto& x : F) x.ntt();
for (auto& x : G) x.ntt();
hadamard_prod(F, G, H);
for (auto& x : H) x.intt();
for (auto& x : F) fill(begin(x), end(x), typename fps::value_type());
for (int j = d; j < 2 * d; j++) F[chi[j]][j] = H[chi[j]][j];
for (auto& x : F) x.ntt();
hadamard_prod(F, G, H);
for (auto& x : H) x.intt();
for (int j = d; j < 2 * d; j++) g[j] = -H[chi[j]][j];
}
mfps res{*this};
res.f = fps{begin(g), begin(g) + n};
return res;
}
mfps log() const {
assert(!f.empty() && f[0] == 1);
return ((*this).diff() / *this).integral();
}
mfps exp() const {
assert(!f.empty() && f[0] == mint{0});
int n = f.size();
mfps g{fps{1}, base};
for (int d = 1; d < n; d *= 2) {
int s = min(n, d * 2);
g.f.resize(s, mint{0});
g *= mfps{fps{begin(f), begin(f) + s}, base} - g.log() + 1;
}
return g;
}
mfps pow(long long e) const {
assert(!f.empty());
if (f[0] != 0) {
mint f0inv = f[0].inverse(), coe = f[0].pow(e);
return (((*this) * f0inv).log() * e).exp() * coe;
}
int n = f.size();
long long base_sum = 0;
for (auto& b : base) base_sum += b - 1;
if (e > base_sum) return mfps{fps(n), base};
mfps res{fps(n), base}, a{*this};
res.f[0] = 1;
for (; e; a *= a, e >>= 1) {
if (e & 1) res *= a;
}
return res;
}
};
/**
* @brief 多変数形式的冪級数ライブラリ
*/
#line 2 "fps/multivariate-fps.hpp"
#include <algorithm>
#include <cassert>
#include <vector>
using namespace std;
#line 2 "modulo/binomial.hpp"
#line 4 "modulo/binomial.hpp"
#include <type_traits>
#line 6 "modulo/binomial.hpp"
using namespace std;
// コンストラクタの MAX に 「C(n, r) や fac(n) でクエリを投げる最大の n 」
// を入れると倍速くらいになる
// mod を超えて前計算して 0 割りを踏むバグは対策済み
template <typename T>
struct Binomial {
vector<T> f, g, h;
Binomial(int MAX = 0) {
assert(T::get_mod() != 0 && "Binomial<mint>()");
f.resize(1, T{1});
g.resize(1, T{1});
h.resize(1, T{1});
if (MAX > 0) extend(MAX + 1);
}
void extend(int m = -1) {
int n = f.size();
if (m == -1) m = n * 2;
m = min<int>(m, T::get_mod());
if (n >= m) return;
f.resize(m);
g.resize(m);
h.resize(m);
for (int i = n; i < m; i++) f[i] = f[i - 1] * T(i);
g[m - 1] = f[m - 1].inverse();
h[m - 1] = g[m - 1] * f[m - 2];
for (int i = m - 2; i >= n; i--) {
g[i] = g[i + 1] * T(i + 1);
h[i] = g[i] * f[i - 1];
}
}
T fac(int i) {
if (i < 0) return T(0);
while (i >= (int)f.size()) extend();
return f[i];
}
T finv(int i) {
if (i < 0) return T(0);
while (i >= (int)g.size()) extend();
return g[i];
}
T inv(int i) {
if (i < 0) return -inv(-i);
while (i >= (int)h.size()) extend();
return h[i];
}
T C(int n, int r) {
if (n < 0 || n < r || r < 0) return T(0);
return fac(n) * finv(n - r) * finv(r);
}
inline T operator()(int n, int r) { return C(n, r); }
template <typename I>
T multinomial(const vector<I>& r) {
static_assert(is_integral<I>::value == true);
int n = 0;
for (auto& x : r) {
if (x < 0) return T(0);
n += x;
}
T res = fac(n);
for (auto& x : r) res *= finv(x);
return res;
}
template <typename I>
T operator()(const vector<I>& r) {
return multinomial(r);
}
T C_naive(int n, int r) {
if (n < 0 || n < r || r < 0) return T(0);
T ret = T(1);
r = min(r, n - r);
for (int i = 1; i <= r; ++i) ret *= inv(i) * (n--);
return ret;
}
T P(int n, int r) {
if (n < 0 || n < r || r < 0) return T(0);
return fac(n) * finv(n - r);
}
// [x^r] 1 / (1-x)^n
T H(int n, int r) {
if (n < 0 || r < 0) return T(0);
return r == 0 ? 1 : C(n + r - 1, r);
}
};
#line 2 "ntt/multivariate-multiplication.hpp"
// 長さが等しい列同士の畳み込みしかしない
template <typename fps>
fps multivariate_multiplication(const fps& f, const fps& g,
const vector<int>& base) {
assert(f.size() == g.size());
int n = f.size(), s = base.size(), W = 1;
if (s == 0) return fps{f[0] * g[0]};
while (W < 2 * n) W *= 2;
vector<int> chi(n);
for (int i = 0; i < n; i++) {
int x = i;
for (int j = 0; j < s - 1; j++) chi[i] += (x /= base[j]);
chi[i] %= s;
}
vector<fps> F(s, fps(W)), G(s, fps(W));
for (int i = 0; i < n; i++) F[chi[i]][i] = f[i], G[chi[i]][i] = g[i];
for (auto& x : F) x.ntt();
for (auto& x : G) x.ntt();
fps a(s);
for (int k = 0; k < W; k++) {
fill(begin(a), end(a), typename fps::value_type());
for (int i = 0; i < s; i++)
for (int j = 0; j < s; j++) {
a[i + j - (i + j >= s ? s : 0)] += F[i][k] * G[j][k];
}
for (int i = 0; i < s; i++) F[i][k] = a[i];
}
for (auto& x : F) x.intt();
fps h(n);
for (int i = 0; i < n; i++) h[i] = F[chi[i]][i];
return h;
}
/**
* @brief Multivariate Multiplication
* @docs docs/ntt/multivariate-multiplication.md
*/
#line 2 "fps/formal-power-series.hpp"
template <typename mint>
struct FormalPowerSeries : vector<mint> {
using vector<mint>::vector;
using FPS = FormalPowerSeries;
FPS &operator+=(const FPS &r) {
if (r.size() > this->size()) this->resize(r.size());
for (int i = 0; i < (int)r.size(); i++) (*this)[i] += r[i];
return *this;
}
FPS &operator+=(const mint &r) {
if (this->empty()) this->resize(1);
(*this)[0] += r;
return *this;
}
FPS &operator-=(const FPS &r) {
if (r.size() > this->size()) this->resize(r.size());
for (int i = 0; i < (int)r.size(); i++) (*this)[i] -= r[i];
return *this;
}
FPS &operator-=(const mint &r) {
if (this->empty()) this->resize(1);
(*this)[0] -= r;
return *this;
}
FPS &operator*=(const mint &v) {
for (int k = 0; k < (int)this->size(); k++) (*this)[k] *= v;
return *this;
}
FPS &operator/=(const FPS &r) {
if (this->size() < r.size()) {
this->clear();
return *this;
}
int n = this->size() - r.size() + 1;
if ((int)r.size() <= 64) {
FPS f(*this), g(r);
g.shrink();
mint coeff = g.back().inverse();
for (auto &x : g) x *= coeff;
int deg = (int)f.size() - (int)g.size() + 1;
int gs = g.size();
FPS quo(deg);
for (int i = deg - 1; i >= 0; i--) {
quo[i] = f[i + gs - 1];
for (int j = 0; j < gs; j++) f[i + j] -= quo[i] * g[j];
}
*this = quo * coeff;
this->resize(n, mint(0));
return *this;
}
return *this = ((*this).rev().pre(n) * r.rev().inv(n)).pre(n).rev();
}
FPS &operator%=(const FPS &r) {
*this -= *this / r * r;
shrink();
return *this;
}
FPS operator+(const FPS &r) const { return FPS(*this) += r; }
FPS operator+(const mint &v) const { return FPS(*this) += v; }
FPS operator-(const FPS &r) const { return FPS(*this) -= r; }
FPS operator-(const mint &v) const { return FPS(*this) -= v; }
FPS operator*(const FPS &r) const { return FPS(*this) *= r; }
FPS operator*(const mint &v) const { return FPS(*this) *= v; }
FPS operator/(const FPS &r) const { return FPS(*this) /= r; }
FPS operator%(const FPS &r) const { return FPS(*this) %= r; }
FPS operator-() const {
FPS ret(this->size());
for (int i = 0; i < (int)this->size(); i++) ret[i] = -(*this)[i];
return ret;
}
void shrink() {
while (this->size() && this->back() == mint(0)) this->pop_back();
}
FPS rev() const {
FPS ret(*this);
reverse(begin(ret), end(ret));
return ret;
}
FPS dot(FPS r) const {
FPS ret(min(this->size(), r.size()));
for (int i = 0; i < (int)ret.size(); i++) ret[i] = (*this)[i] * r[i];
return ret;
}
// 前 sz 項を取ってくる。sz に足りない項は 0 埋めする
FPS pre(int sz) const {
FPS ret(begin(*this), begin(*this) + min((int)this->size(), sz));
if ((int)ret.size() < sz) ret.resize(sz);
return ret;
}
FPS operator>>(int sz) const {
if ((int)this->size() <= sz) return {};
FPS ret(*this);
ret.erase(ret.begin(), ret.begin() + sz);
return ret;
}
FPS operator<<(int sz) const {
FPS ret(*this);
ret.insert(ret.begin(), sz, mint(0));
return ret;
}
FPS diff() const {
const int n = (int)this->size();
FPS ret(max(0, n - 1));
mint one(1), coeff(1);
for (int i = 1; i < n; i++) {
ret[i - 1] = (*this)[i] * coeff;
coeff += one;
}
return ret;
}
FPS integral() const {
const int n = (int)this->size();
FPS ret(n + 1);
ret[0] = mint(0);
if (n > 0) ret[1] = mint(1);
auto mod = mint::get_mod();
for (int i = 2; i <= n; i++) ret[i] = (-ret[mod % i]) * (mod / i);
for (int i = 0; i < n; i++) ret[i + 1] *= (*this)[i];
return ret;
}
mint eval(mint x) const {
mint r = 0, w = 1;
for (auto &v : *this) r += w * v, w *= x;
return r;
}
FPS log(int deg = -1) const {
assert(!(*this).empty() && (*this)[0] == mint(1));
if (deg == -1) deg = (int)this->size();
return (this->diff() * this->inv(deg)).pre(deg - 1).integral();
}
FPS pow(int64_t k, int deg = -1) const {
const int n = (int)this->size();
if (deg == -1) deg = n;
if (k == 0) {
FPS ret(deg);
if (deg) ret[0] = 1;
return ret;
}
for (int i = 0; i < n; i++) {
if ((*this)[i] != mint(0)) {
mint rev = mint(1) / (*this)[i];
FPS ret = (((*this * rev) >> i).log(deg) * k).exp(deg);
ret *= (*this)[i].pow(k);
ret = (ret << (i * k)).pre(deg);
if ((int)ret.size() < deg) ret.resize(deg, mint(0));
return ret;
}
if (__int128_t(i + 1) * k >= deg) return FPS(deg, mint(0));
}
return FPS(deg, mint(0));
}
static void *ntt_ptr;
static void set_fft();
FPS &operator*=(const FPS &r);
void ntt();
void intt();
void ntt_doubling();
static int ntt_pr();
FPS inv(int deg = -1) const;
FPS exp(int deg = -1) const;
};
template <typename mint>
void *FormalPowerSeries<mint>::ntt_ptr = nullptr;
/**
* @brief 多項式/形式的冪級数ライブラリ
* @docs docs/fps/formal-power-series.md
*/
#line 11 "fps/multivariate-fps.hpp"
// FFT mod でないと使えない
// f.size() != (base の総積) でも動くが, 二項演算は長さが等しい列同士しかダメ
// 添え字アクセスは operator() を使う
template <typename mint>
struct MultivariateFormalPowerSeries {
using mfps = MultivariateFormalPowerSeries<mint>;
using fps = FormalPowerSeries<mint>;
fps f;
vector<int> base;
MultivariateFormalPowerSeries() = default;
MultivariateFormalPowerSeries(const vector<int>& _base) : base(_base) {
int n = 1;
for (auto& x : base) n *= x;
f.resize(n);
}
MultivariateFormalPowerSeries(const fps& _f, const vector<int>& _base)
: f(_f), base(_base) {}
friend ostream& operator<<(ostream& os, const mfps& rhs) {
os << "[ ";
for (int i = 0; i < (int)rhs.f.size(); i++) {
os << rhs.f[i] << (i + 1 == (int)rhs.f.size() ? "" : ", ");
}
return os << " ]";
}
long long _id(int) { return 0; }
template <typename Head, typename... Tail>
long long _id(int i, Head&& head, Tail&&... tail) {
assert(i < (int)base.size() && (int)head < base[i]);
return head + _id(i + 1, std::forward<Tail>(tail)...) * base[i];
}
template <typename... Args>
long long id(Args&&... args) {
return _id(0, std::forward<Args>(args)...);
}
template <typename... Args>
mint& operator()(Args&&... args) {
return f[id(std::forward<Args>(args)...)];
}
mfps& operator+=(const mfps& rhs) {
assert(base == rhs.base && f.size() == rhs.f.size());
for (int i = 0; i < (int)f.size(); i++) f[i] += rhs.f[i];
return *this;
}
mfps& operator-=(const mfps& rhs) {
assert(base == rhs.base && f.size() == rhs.f.size());
for (int i = 0; i < (int)f.size(); i++) f[i] -= rhs.f[i];
return *this;
}
mfps& operator*=(const mfps& rhs) {
assert(base == rhs.base && f.size() == rhs.f.size());
f = multivariate_multiplication(f, rhs.f, base);
return *this;
}
mfps& operator/=(const mfps& rhs) {
assert(base == rhs.base);
assert(f.size() == rhs.f.size());
return (*this) *= rhs.inv();
}
mfps& operator+=(const mint& rhs) {
assert(!f.empty());
f[0] += rhs;
return *this;
}
mfps& operator-=(const mint& rhs) {
assert(!f.empty());
f[0] -= rhs;
return *this;
}
mfps& operator*=(const mint& rhs) {
for (auto& x : f) x *= rhs;
return *this;
}
mfps& operator/=(const mint& rhs) {
for (auto& x : f) x /= rhs;
return *this;
}
mfps operator+(const mfps& rhs) const { return mfps{*this} += rhs; }
mfps operator-(const mfps& rhs) const { return mfps{*this} -= rhs; }
mfps operator*(const mfps& rhs) const { return mfps{*this} *= rhs; }
mfps operator/(const mfps& rhs) const { return mfps{*this} /= rhs; }
mfps operator+(const mint& rhs) const { return mfps{*this} += rhs; }
mfps operator-(const mint& rhs) const { return mfps{*this} -= rhs; }
mfps operator*(const mint& rhs) const { return mfps{*this} *= rhs; }
mfps operator/(const mint& rhs) const { return mfps{*this} /= rhs; }
mfps operator+() const { return mfps{*this}; }
mfps operator-() const { return mfps{-f, base}; }
friend bool operator==(const mfps& lhs, const mfps& rhs) {
return lhs.f == rhs.f && lhs.base == rhs.base;
}
friend bool operator!=(const mfps& lhs, const mfps& rhs) {
return lhs.f != rhs.f || lhs.base != rhs.base;
}
mfps diff() const {
mfps g{*this};
for (int i = 0; i < (int)g.f.size(); i++) g.f[i] *= i;
return g;
}
mfps integral() const {
static Binomial<mint> binom;
mfps g{*this};
for (int i = 1; i < (int)g.f.size(); i++) g.f[i] *= binom.inv(i);
return g;
}
mfps inv() const {
assert(f[0] != 0);
if (base.empty()) return mfps{fps{f[0].inverse()}, base};
int n = f.size(), s = base.size(), W = 1;
while (W < 2 * n) W *= 2;
vector<int> chi(W);
for (int i = 0; i < W; i++) {
int x = i;
for (int j = 0; j < s - 1; j++) chi[i] += (x /= base[j]);
chi[i] %= s;
}
auto hadamard_prod = [&s](vector<fps>& F, vector<fps>& G, vector<fps>& H) {
fps a(s);
for (int k = 0; k < (int)F[0].size(); k++) {
fill(begin(a), end(a), typename fps::value_type());
for (int i = 0; i < s; i++)
for (int j = 0; j < s; j++) {
a[i + j - (i + j >= s ? s : 0)] += F[i][k] * G[j][k];
}
for (int i = 0; i < s; i++) H[i][k] = a[i];
}
};
fps g(W);
g[0] = f[0].inverse();
for (int d = 1; d < n; d *= 2) {
vector<fps> F(s, fps(2 * d)), G(s, fps(2 * d)), H(s, fps(2 * d));
for (int j = 0; j < min((int)f.size(), 2 * d); j++) F[chi[j]][j] = f[j];
for (int j = 0; j < d; j++) G[chi[j]][j] = g[j];
for (auto& x : F) x.ntt();
for (auto& x : G) x.ntt();
hadamard_prod(F, G, H);
for (auto& x : H) x.intt();
for (auto& x : F) fill(begin(x), end(x), typename fps::value_type());
for (int j = d; j < 2 * d; j++) F[chi[j]][j] = H[chi[j]][j];
for (auto& x : F) x.ntt();
hadamard_prod(F, G, H);
for (auto& x : H) x.intt();
for (int j = d; j < 2 * d; j++) g[j] = -H[chi[j]][j];
}
mfps res{*this};
res.f = fps{begin(g), begin(g) + n};
return res;
}
mfps log() const {
assert(!f.empty() && f[0] == 1);
return ((*this).diff() / *this).integral();
}
mfps exp() const {
assert(!f.empty() && f[0] == mint{0});
int n = f.size();
mfps g{fps{1}, base};
for (int d = 1; d < n; d *= 2) {
int s = min(n, d * 2);
g.f.resize(s, mint{0});
g *= mfps{fps{begin(f), begin(f) + s}, base} - g.log() + 1;
}
return g;
}
mfps pow(long long e) const {
assert(!f.empty());
if (f[0] != 0) {
mint f0inv = f[0].inverse(), coe = f[0].pow(e);
return (((*this) * f0inv).log() * e).exp() * coe;
}
int n = f.size();
long long base_sum = 0;
for (auto& b : base) base_sum += b - 1;
if (e > base_sum) return mfps{fps(n), base};
mfps res{fps(n), base}, a{*this};
res.f[0] = 1;
for (; e; a *= a, e >>= 1) {
if (e & 1) res *= a;
}
return res;
}
};
/**
* @brief 多変数形式的冪級数ライブラリ
*/
Back to top page