Nyaan's Library

This documentation is automatically generated by online-judge-tools/verification-helper

View on GitHub

:heavy_check_mark: 関数の合成( $\mathrm{O}(N \log^2 N)$ )
(fps/fps-composition.hpp)

Depends on

Verified with

Code

#pragma once

#include <cassert>
#include <vector>
using namespace std;

#include "formal-power-series.hpp"

// g(f(x)) を計算
template <typename mint>
FormalPowerSeries<mint> composition(FormalPowerSeries<mint> f,
                                    FormalPowerSeries<mint> g, int deg = -1) {
  using fps = FormalPowerSeries<mint>;

  auto dfs = [&](auto rc, fps Q, int n, int h, int k) -> fps {
    if (n == 0) {
      fps T{begin(Q), begin(Q) + k};
      T.push_back(1);
      fps u = g * T.rev().inv().rev();
      fps P(h * k);
      for (int i = 0; i < (int)g.size(); i++) P[k - 1 - i] = u[i + k];
      return P;
    }
    fps nQ(4 * h * k), nR(2 * h * k);
    for (int i = 0; i < k; i++) {
      copy(begin(Q) + i * h, begin(Q) + i * h + n + 1, begin(nQ) + i * 2 * h);
    }
    nQ[k * 2 * h] += 1;
    nQ.ntt();
    for (int i = 0; i < 4 * h * k; i += 2) swap(nQ[i], nQ[i + 1]);
    for (int i = 0; i < 2 * h * k; i++) nR[i] = nQ[i * 2] * nQ[i * 2 + 1];
    nR.intt();
    nR[0] -= 1;
    Q.assign(h * k, 0);
    for (int i = 0; i < 2 * k; i++) {
      for (int j = 0; j <= n / 2; j++) {
        Q[i * h / 2 + j] = nR[i * h + j];
      }
    }
    auto P = rc(rc, Q, n / 2, h / 2, k * 2);
    fps nP(4 * h * k);
    for (int i = 0; i < 2 * k; i++) {
      for (int j = 0; j <= n / 2; j++) {
        nP[i * 2 * h + j * 2 + n % 2] = P[i * h / 2 + j];
      }
    }
    nP.ntt();
    for (int i = 1; i < 4 * h * k; i *= 2) {
      reverse(begin(nQ) + i, begin(nQ) + i * 2);
    }
    for (int i = 0; i < 4 * h * k; i++) nP[i] *= nQ[i];
    nP.intt();
    P.assign(h * k, 0);
    for (int i = 0; i < k; i++) {
      copy(begin(nP) + i * 2 * h, begin(nP) + i * 2 * h + n + 1,
           begin(P) + i * h);
    }
    return P;
  };

  if (deg == -1) deg = max(f.size(), g.size());
  f.resize(deg), g.resize(deg);
  int n = f.size() - 1, k = 1;
  int h = 1;
  while (h < n + 1) h *= 2;
  fps Q(h * k);
  for (int i = 0; i <= n; i++) Q[i] = -f[i];
  fps P = dfs(dfs, Q, n, h, k);
  return P.pre(n + 1).rev();
}

/**
 * @brief 関数の合成( $\mathrm{O}(N \log^2 N)$ )
 */
#line 2 "fps/fps-composition.hpp"

#include <cassert>
#include <vector>
using namespace std;

#line 2 "fps/formal-power-series.hpp"

template <typename mint>
struct FormalPowerSeries : vector<mint> {
  using vector<mint>::vector;
  using FPS = FormalPowerSeries;

  FPS &operator+=(const FPS &r) {
    if (r.size() > this->size()) this->resize(r.size());
    for (int i = 0; i < (int)r.size(); i++) (*this)[i] += r[i];
    return *this;
  }

  FPS &operator+=(const mint &r) {
    if (this->empty()) this->resize(1);
    (*this)[0] += r;
    return *this;
  }

  FPS &operator-=(const FPS &r) {
    if (r.size() > this->size()) this->resize(r.size());
    for (int i = 0; i < (int)r.size(); i++) (*this)[i] -= r[i];
    return *this;
  }

  FPS &operator-=(const mint &r) {
    if (this->empty()) this->resize(1);
    (*this)[0] -= r;
    return *this;
  }

  FPS &operator*=(const mint &v) {
    for (int k = 0; k < (int)this->size(); k++) (*this)[k] *= v;
    return *this;
  }

  FPS &operator/=(const FPS &r) {
    if (this->size() < r.size()) {
      this->clear();
      return *this;
    }
    int n = this->size() - r.size() + 1;
    if ((int)r.size() <= 64) {
      FPS f(*this), g(r);
      g.shrink();
      mint coeff = g.back().inverse();
      for (auto &x : g) x *= coeff;
      int deg = (int)f.size() - (int)g.size() + 1;
      int gs = g.size();
      FPS quo(deg);
      for (int i = deg - 1; i >= 0; i--) {
        quo[i] = f[i + gs - 1];
        for (int j = 0; j < gs; j++) f[i + j] -= quo[i] * g[j];
      }
      *this = quo * coeff;
      this->resize(n, mint(0));
      return *this;
    }
    return *this = ((*this).rev().pre(n) * r.rev().inv(n)).pre(n).rev();
  }

  FPS &operator%=(const FPS &r) {
    *this -= *this / r * r;
    shrink();
    return *this;
  }

  FPS operator+(const FPS &r) const { return FPS(*this) += r; }
  FPS operator+(const mint &v) const { return FPS(*this) += v; }
  FPS operator-(const FPS &r) const { return FPS(*this) -= r; }
  FPS operator-(const mint &v) const { return FPS(*this) -= v; }
  FPS operator*(const FPS &r) const { return FPS(*this) *= r; }
  FPS operator*(const mint &v) const { return FPS(*this) *= v; }
  FPS operator/(const FPS &r) const { return FPS(*this) /= r; }
  FPS operator%(const FPS &r) const { return FPS(*this) %= r; }
  FPS operator-() const {
    FPS ret(this->size());
    for (int i = 0; i < (int)this->size(); i++) ret[i] = -(*this)[i];
    return ret;
  }

  void shrink() {
    while (this->size() && this->back() == mint(0)) this->pop_back();
  }

  FPS rev() const {
    FPS ret(*this);
    reverse(begin(ret), end(ret));
    return ret;
  }

  FPS dot(FPS r) const {
    FPS ret(min(this->size(), r.size()));
    for (int i = 0; i < (int)ret.size(); i++) ret[i] = (*this)[i] * r[i];
    return ret;
  }

  // 前 sz 項を取ってくる。sz に足りない項は 0 埋めする
  FPS pre(int sz) const {
    FPS ret(begin(*this), begin(*this) + min((int)this->size(), sz));
    if ((int)ret.size() < sz) ret.resize(sz);
    return ret;
  }

  FPS operator>>(int sz) const {
    if ((int)this->size() <= sz) return {};
    FPS ret(*this);
    ret.erase(ret.begin(), ret.begin() + sz);
    return ret;
  }

  FPS operator<<(int sz) const {
    FPS ret(*this);
    ret.insert(ret.begin(), sz, mint(0));
    return ret;
  }

  FPS diff() const {
    const int n = (int)this->size();
    FPS ret(max(0, n - 1));
    mint one(1), coeff(1);
    for (int i = 1; i < n; i++) {
      ret[i - 1] = (*this)[i] * coeff;
      coeff += one;
    }
    return ret;
  }

  FPS integral() const {
    const int n = (int)this->size();
    FPS ret(n + 1);
    ret[0] = mint(0);
    if (n > 0) ret[1] = mint(1);
    auto mod = mint::get_mod();
    for (int i = 2; i <= n; i++) ret[i] = (-ret[mod % i]) * (mod / i);
    for (int i = 0; i < n; i++) ret[i + 1] *= (*this)[i];
    return ret;
  }

  mint eval(mint x) const {
    mint r = 0, w = 1;
    for (auto &v : *this) r += w * v, w *= x;
    return r;
  }

  FPS log(int deg = -1) const {
    assert(!(*this).empty() && (*this)[0] == mint(1));
    if (deg == -1) deg = (int)this->size();
    return (this->diff() * this->inv(deg)).pre(deg - 1).integral();
  }

  FPS pow(int64_t k, int deg = -1) const {
    const int n = (int)this->size();
    if (deg == -1) deg = n;
    if (k == 0) {
      FPS ret(deg);
      if (deg) ret[0] = 1;
      return ret;
    }
    for (int i = 0; i < n; i++) {
      if ((*this)[i] != mint(0)) {
        mint rev = mint(1) / (*this)[i];
        FPS ret = (((*this * rev) >> i).log(deg) * k).exp(deg);
        ret *= (*this)[i].pow(k);
        ret = (ret << (i * k)).pre(deg);
        if ((int)ret.size() < deg) ret.resize(deg, mint(0));
        return ret;
      }
      if (__int128_t(i + 1) * k >= deg) return FPS(deg, mint(0));
    }
    return FPS(deg, mint(0));
  }

  static void *ntt_ptr;
  static void set_fft();
  FPS &operator*=(const FPS &r);
  void ntt();
  void intt();
  void ntt_doubling();
  static int ntt_pr();
  FPS inv(int deg = -1) const;
  FPS exp(int deg = -1) const;
};
template <typename mint>
void *FormalPowerSeries<mint>::ntt_ptr = nullptr;

/**
 * @brief 多項式/形式的冪級数ライブラリ
 * @docs docs/fps/formal-power-series.md
 */
#line 8 "fps/fps-composition.hpp"

// g(f(x)) を計算
template <typename mint>
FormalPowerSeries<mint> composition(FormalPowerSeries<mint> f,
                                    FormalPowerSeries<mint> g, int deg = -1) {
  using fps = FormalPowerSeries<mint>;

  auto dfs = [&](auto rc, fps Q, int n, int h, int k) -> fps {
    if (n == 0) {
      fps T{begin(Q), begin(Q) + k};
      T.push_back(1);
      fps u = g * T.rev().inv().rev();
      fps P(h * k);
      for (int i = 0; i < (int)g.size(); i++) P[k - 1 - i] = u[i + k];
      return P;
    }
    fps nQ(4 * h * k), nR(2 * h * k);
    for (int i = 0; i < k; i++) {
      copy(begin(Q) + i * h, begin(Q) + i * h + n + 1, begin(nQ) + i * 2 * h);
    }
    nQ[k * 2 * h] += 1;
    nQ.ntt();
    for (int i = 0; i < 4 * h * k; i += 2) swap(nQ[i], nQ[i + 1]);
    for (int i = 0; i < 2 * h * k; i++) nR[i] = nQ[i * 2] * nQ[i * 2 + 1];
    nR.intt();
    nR[0] -= 1;
    Q.assign(h * k, 0);
    for (int i = 0; i < 2 * k; i++) {
      for (int j = 0; j <= n / 2; j++) {
        Q[i * h / 2 + j] = nR[i * h + j];
      }
    }
    auto P = rc(rc, Q, n / 2, h / 2, k * 2);
    fps nP(4 * h * k);
    for (int i = 0; i < 2 * k; i++) {
      for (int j = 0; j <= n / 2; j++) {
        nP[i * 2 * h + j * 2 + n % 2] = P[i * h / 2 + j];
      }
    }
    nP.ntt();
    for (int i = 1; i < 4 * h * k; i *= 2) {
      reverse(begin(nQ) + i, begin(nQ) + i * 2);
    }
    for (int i = 0; i < 4 * h * k; i++) nP[i] *= nQ[i];
    nP.intt();
    P.assign(h * k, 0);
    for (int i = 0; i < k; i++) {
      copy(begin(nP) + i * 2 * h, begin(nP) + i * 2 * h + n + 1,
           begin(P) + i * h);
    }
    return P;
  };

  if (deg == -1) deg = max(f.size(), g.size());
  f.resize(deg), g.resize(deg);
  int n = f.size() - 1, k = 1;
  int h = 1;
  while (h < n + 1) h *= 2;
  fps Q(h * k);
  for (int i = 0; i <= n; i++) Q[i] = -f[i];
  fps P = dfs(dfs, Q, n, h, k);
  return P.pre(n + 1).rev();
}

/**
 * @brief 関数の合成( $\mathrm{O}(N \log^2 N)$ )
 */
Back to top page