三角関数
(fps/fps-circular.hpp)
- View this file on GitHub
- Last update: 2023-08-31 20:44:07+09:00
- Include:
#include "fps/fps-circular.hpp"
fps-三角関数
$N$次の形式的冪級数 $f(x)$ に対して $g(x) \equiv \cos(f(x)), h(x) \equiv \sin(f(x)) \mod x^N$ を満たす $g(x)$ を $\mathrm{O}(N \log N)$ で計算するライブラリ。
概要
$g \equiv \cos f, h \equiv \sin f \pmod{x^n}$ を求めたい。
これはオイラーの公式 $e^{if}=\cos f+i\sin f$ を利用すると $\mathrm{exp}(f)$ と同様にニュートン法で求まる。(詳細は割愛する。)
使い方
-
circular(fre, fim, deg)
: $Re[f]=fre,Im[f]=fim$ である FPS $f$ について $\cos f,\sin f$ を $\deg$ 次の項まで求める。
Depends on
Verified with
Code
#pragma once
#include "../fps/formal-power-series.hpp"
#include "../modint/montgomery-modint.hpp"
template <typename mint>
pair<FormalPowerSeries<mint>, FormalPowerSeries<mint>> circular(
const FormalPowerSeries<mint> &fre, const FormalPowerSeries<mint> &fim,
int deg = -1) {
using fps = FormalPowerSeries<mint>;
assert(fre.size() == 0 || fre[0] == mint(0));
assert(fim.size() == 0 || fim[0] == mint(0));
if (deg == -1) deg = (int)max(fre.size(), fim.size());
fps re({mint(1)}), im({mint(0)});
fps::set_fft();
if (fps::ntt_ptr == nullptr) {
for (int i = 1; i < deg; i <<= 1) {
fps dre = re.diff();
fps dim = im.diff();
fps fhypot = (re * re + im * im).inv(i << 1);
fps ere = dre * re + dim * im;
fps eim = dim * re - dre * im;
fps logre = (ere * fhypot).pre((i << 1) - 1).integral();
fps logim = (eim * fhypot).pre((i << 1) - 1).integral();
fps gre = (-logre) + mint(1) - fim.pre(i << 1);
fps gim = (-logim) + fre.pre(i << 1);
fps hre = (re * gre - im * gim).pre(i << 1);
fps him = (re * gim + im * gre).pre(i << 1);
swap(re, hre);
swap(im, him);
}
} else {
for (int i = 1; i < deg; i <<= 1) {
fps dre = re.diff();
fps dim = im.diff();
re.resize(i << 1);
im.resize(i << 1);
dre.resize(i << 1);
dim.resize(i << 1);
re.ntt();
im.ntt();
dre.ntt();
dim.ntt();
fps fhypot(i << 1), ere(i << 1), eim(i << 1);
for (int j = 0; j < 2 * i; j++) {
fhypot[j] = re[j] * re[j] + im[j] * im[j];
ere[j] = dre[j] * re[j] + dim[j] * im[j];
eim[j] = dim[j] * re[j] - dre[j] * im[j];
}
fhypot.intt();
fhypot = fhypot.inv(i << 1);
fhypot.resize(i << 2);
fhypot.ntt();
ere.ntt_doubling();
eim.ntt_doubling();
fps logre(i << 2), logim(i << 2);
for (int j = 0; j < 4 * i; j++) {
logre[j] = ere[j] * fhypot[j];
logim[j] = eim[j] * fhypot[j];
}
logre.intt();
logim.intt();
logre = logre.pre((i << 1) - 1).integral();
logim = logim.pre((i << 1) - 1).integral();
fps gre = (-logre) + mint(1) - fim.pre(i << 1);
fps gim = (-logim) + fre.pre(i << 1);
gre.resize(i << 2);
gim.resize(i << 2);
gre.ntt();
gim.ntt();
re.ntt_doubling();
im.ntt_doubling();
fps hre(i << 2), him(i << 2);
for (int j = 0; j < 4 * i; j++) {
hre[j] = re[j] * gre[j] - im[j] * gim[j];
him[j] = re[j] * gim[j] + im[j] * gre[j];
}
hre.intt();
him.intt();
hre = hre.pre(i << 1);
him = him.pre(i << 1);
swap(re, hre);
swap(im, him);
}
}
return make_pair(re.pre(deg), im.pre(deg));
}
/**
* @brief 三角関数
* @docs docs/fps/fps-circular.md
*/
#line 2 "fps/formal-power-series.hpp"
template <typename mint>
struct FormalPowerSeries : vector<mint> {
using vector<mint>::vector;
using FPS = FormalPowerSeries;
FPS &operator+=(const FPS &r) {
if (r.size() > this->size()) this->resize(r.size());
for (int i = 0; i < (int)r.size(); i++) (*this)[i] += r[i];
return *this;
}
FPS &operator+=(const mint &r) {
if (this->empty()) this->resize(1);
(*this)[0] += r;
return *this;
}
FPS &operator-=(const FPS &r) {
if (r.size() > this->size()) this->resize(r.size());
for (int i = 0; i < (int)r.size(); i++) (*this)[i] -= r[i];
return *this;
}
FPS &operator-=(const mint &r) {
if (this->empty()) this->resize(1);
(*this)[0] -= r;
return *this;
}
FPS &operator*=(const mint &v) {
for (int k = 0; k < (int)this->size(); k++) (*this)[k] *= v;
return *this;
}
FPS &operator/=(const FPS &r) {
if (this->size() < r.size()) {
this->clear();
return *this;
}
int n = this->size() - r.size() + 1;
if ((int)r.size() <= 64) {
FPS f(*this), g(r);
g.shrink();
mint coeff = g.back().inverse();
for (auto &x : g) x *= coeff;
int deg = (int)f.size() - (int)g.size() + 1;
int gs = g.size();
FPS quo(deg);
for (int i = deg - 1; i >= 0; i--) {
quo[i] = f[i + gs - 1];
for (int j = 0; j < gs; j++) f[i + j] -= quo[i] * g[j];
}
*this = quo * coeff;
this->resize(n, mint(0));
return *this;
}
return *this = ((*this).rev().pre(n) * r.rev().inv(n)).pre(n).rev();
}
FPS &operator%=(const FPS &r) {
*this -= *this / r * r;
shrink();
return *this;
}
FPS operator+(const FPS &r) const { return FPS(*this) += r; }
FPS operator+(const mint &v) const { return FPS(*this) += v; }
FPS operator-(const FPS &r) const { return FPS(*this) -= r; }
FPS operator-(const mint &v) const { return FPS(*this) -= v; }
FPS operator*(const FPS &r) const { return FPS(*this) *= r; }
FPS operator*(const mint &v) const { return FPS(*this) *= v; }
FPS operator/(const FPS &r) const { return FPS(*this) /= r; }
FPS operator%(const FPS &r) const { return FPS(*this) %= r; }
FPS operator-() const {
FPS ret(this->size());
for (int i = 0; i < (int)this->size(); i++) ret[i] = -(*this)[i];
return ret;
}
void shrink() {
while (this->size() && this->back() == mint(0)) this->pop_back();
}
FPS rev() const {
FPS ret(*this);
reverse(begin(ret), end(ret));
return ret;
}
FPS dot(FPS r) const {
FPS ret(min(this->size(), r.size()));
for (int i = 0; i < (int)ret.size(); i++) ret[i] = (*this)[i] * r[i];
return ret;
}
// 前 sz 項を取ってくる。sz に足りない項は 0 埋めする
FPS pre(int sz) const {
FPS ret(begin(*this), begin(*this) + min((int)this->size(), sz));
if ((int)ret.size() < sz) ret.resize(sz);
return ret;
}
FPS operator>>(int sz) const {
if ((int)this->size() <= sz) return {};
FPS ret(*this);
ret.erase(ret.begin(), ret.begin() + sz);
return ret;
}
FPS operator<<(int sz) const {
FPS ret(*this);
ret.insert(ret.begin(), sz, mint(0));
return ret;
}
FPS diff() const {
const int n = (int)this->size();
FPS ret(max(0, n - 1));
mint one(1), coeff(1);
for (int i = 1; i < n; i++) {
ret[i - 1] = (*this)[i] * coeff;
coeff += one;
}
return ret;
}
FPS integral() const {
const int n = (int)this->size();
FPS ret(n + 1);
ret[0] = mint(0);
if (n > 0) ret[1] = mint(1);
auto mod = mint::get_mod();
for (int i = 2; i <= n; i++) ret[i] = (-ret[mod % i]) * (mod / i);
for (int i = 0; i < n; i++) ret[i + 1] *= (*this)[i];
return ret;
}
mint eval(mint x) const {
mint r = 0, w = 1;
for (auto &v : *this) r += w * v, w *= x;
return r;
}
FPS log(int deg = -1) const {
assert(!(*this).empty() && (*this)[0] == mint(1));
if (deg == -1) deg = (int)this->size();
return (this->diff() * this->inv(deg)).pre(deg - 1).integral();
}
FPS pow(int64_t k, int deg = -1) const {
const int n = (int)this->size();
if (deg == -1) deg = n;
if (k == 0) {
FPS ret(deg);
if (deg) ret[0] = 1;
return ret;
}
for (int i = 0; i < n; i++) {
if ((*this)[i] != mint(0)) {
mint rev = mint(1) / (*this)[i];
FPS ret = (((*this * rev) >> i).log(deg) * k).exp(deg);
ret *= (*this)[i].pow(k);
ret = (ret << (i * k)).pre(deg);
if ((int)ret.size() < deg) ret.resize(deg, mint(0));
return ret;
}
if (__int128_t(i + 1) * k >= deg) return FPS(deg, mint(0));
}
return FPS(deg, mint(0));
}
static void *ntt_ptr;
static void set_fft();
FPS &operator*=(const FPS &r);
void ntt();
void intt();
void ntt_doubling();
static int ntt_pr();
FPS inv(int deg = -1) const;
FPS exp(int deg = -1) const;
};
template <typename mint>
void *FormalPowerSeries<mint>::ntt_ptr = nullptr;
/**
* @brief 多項式/形式的冪級数ライブラリ
* @docs docs/fps/formal-power-series.md
*/
#line 2 "modint/montgomery-modint.hpp"
template <uint32_t mod>
struct LazyMontgomeryModInt {
using mint = LazyMontgomeryModInt;
using i32 = int32_t;
using u32 = uint32_t;
using u64 = uint64_t;
static constexpr u32 get_r() {
u32 ret = mod;
for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret;
return ret;
}
static constexpr u32 r = get_r();
static constexpr u32 n2 = -u64(mod) % mod;
static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30");
static_assert((mod & 1) == 1, "invalid, mod % 2 == 0");
static_assert(r * mod == 1, "this code has bugs.");
u32 a;
constexpr LazyMontgomeryModInt() : a(0) {}
constexpr LazyMontgomeryModInt(const int64_t &b)
: a(reduce(u64(b % mod + mod) * n2)){};
static constexpr u32 reduce(const u64 &b) {
return (b + u64(u32(b) * u32(-r)) * mod) >> 32;
}
constexpr mint &operator+=(const mint &b) {
if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod;
return *this;
}
constexpr mint &operator-=(const mint &b) {
if (i32(a -= b.a) < 0) a += 2 * mod;
return *this;
}
constexpr mint &operator*=(const mint &b) {
a = reduce(u64(a) * b.a);
return *this;
}
constexpr mint &operator/=(const mint &b) {
*this *= b.inverse();
return *this;
}
constexpr mint operator+(const mint &b) const { return mint(*this) += b; }
constexpr mint operator-(const mint &b) const { return mint(*this) -= b; }
constexpr mint operator*(const mint &b) const { return mint(*this) *= b; }
constexpr mint operator/(const mint &b) const { return mint(*this) /= b; }
constexpr bool operator==(const mint &b) const {
return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
}
constexpr bool operator!=(const mint &b) const {
return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
}
constexpr mint operator-() const { return mint() - mint(*this); }
constexpr mint operator+() const { return mint(*this); }
constexpr mint pow(u64 n) const {
mint ret(1), mul(*this);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
constexpr mint inverse() const {
int x = get(), y = mod, u = 1, v = 0, t = 0, tmp = 0;
while (y > 0) {
t = x / y;
x -= t * y, u -= t * v;
tmp = x, x = y, y = tmp;
tmp = u, u = v, v = tmp;
}
return mint{u};
}
friend ostream &operator<<(ostream &os, const mint &b) {
return os << b.get();
}
friend istream &operator>>(istream &is, mint &b) {
int64_t t;
is >> t;
b = LazyMontgomeryModInt<mod>(t);
return (is);
}
constexpr u32 get() const {
u32 ret = reduce(a);
return ret >= mod ? ret - mod : ret;
}
static constexpr u32 get_mod() { return mod; }
};
#line 4 "fps/fps-circular.hpp"
template <typename mint>
pair<FormalPowerSeries<mint>, FormalPowerSeries<mint>> circular(
const FormalPowerSeries<mint> &fre, const FormalPowerSeries<mint> &fim,
int deg = -1) {
using fps = FormalPowerSeries<mint>;
assert(fre.size() == 0 || fre[0] == mint(0));
assert(fim.size() == 0 || fim[0] == mint(0));
if (deg == -1) deg = (int)max(fre.size(), fim.size());
fps re({mint(1)}), im({mint(0)});
fps::set_fft();
if (fps::ntt_ptr == nullptr) {
for (int i = 1; i < deg; i <<= 1) {
fps dre = re.diff();
fps dim = im.diff();
fps fhypot = (re * re + im * im).inv(i << 1);
fps ere = dre * re + dim * im;
fps eim = dim * re - dre * im;
fps logre = (ere * fhypot).pre((i << 1) - 1).integral();
fps logim = (eim * fhypot).pre((i << 1) - 1).integral();
fps gre = (-logre) + mint(1) - fim.pre(i << 1);
fps gim = (-logim) + fre.pre(i << 1);
fps hre = (re * gre - im * gim).pre(i << 1);
fps him = (re * gim + im * gre).pre(i << 1);
swap(re, hre);
swap(im, him);
}
} else {
for (int i = 1; i < deg; i <<= 1) {
fps dre = re.diff();
fps dim = im.diff();
re.resize(i << 1);
im.resize(i << 1);
dre.resize(i << 1);
dim.resize(i << 1);
re.ntt();
im.ntt();
dre.ntt();
dim.ntt();
fps fhypot(i << 1), ere(i << 1), eim(i << 1);
for (int j = 0; j < 2 * i; j++) {
fhypot[j] = re[j] * re[j] + im[j] * im[j];
ere[j] = dre[j] * re[j] + dim[j] * im[j];
eim[j] = dim[j] * re[j] - dre[j] * im[j];
}
fhypot.intt();
fhypot = fhypot.inv(i << 1);
fhypot.resize(i << 2);
fhypot.ntt();
ere.ntt_doubling();
eim.ntt_doubling();
fps logre(i << 2), logim(i << 2);
for (int j = 0; j < 4 * i; j++) {
logre[j] = ere[j] * fhypot[j];
logim[j] = eim[j] * fhypot[j];
}
logre.intt();
logim.intt();
logre = logre.pre((i << 1) - 1).integral();
logim = logim.pre((i << 1) - 1).integral();
fps gre = (-logre) + mint(1) - fim.pre(i << 1);
fps gim = (-logim) + fre.pre(i << 1);
gre.resize(i << 2);
gim.resize(i << 2);
gre.ntt();
gim.ntt();
re.ntt_doubling();
im.ntt_doubling();
fps hre(i << 2), him(i << 2);
for (int j = 0; j < 4 * i; j++) {
hre[j] = re[j] * gre[j] - im[j] * gim[j];
him[j] = re[j] * gim[j] + im[j] * gre[j];
}
hre.intt();
him.intt();
hre = hre.pre(i << 1);
him = him.pre(i << 1);
swap(re, hre);
swap(im, him);
}
}
return make_pair(re.pre(deg), im.pre(deg));
}
/**
* @brief 三角関数
* @docs docs/fps/fps-circular.md
*/