Nyaan's Library

This documentation is automatically generated by online-judge-tools/verification-helper

View on GitHub

:heavy_check_mark: fps/fast-interpolate.hpp

Depends on

Verified with

Code

#pragma once

#include <vector>
using namespace std;

#include "formal-power-series.hpp"

// https://github.com/hos-lyric/libra/blob/master/algebra/poly_998244353.cpp
// の多項式補間を手元で動くように改造
// xs が distinct じゃないと壊れる
template <typename mint>
struct SubproductTree {
  using fps = FormalPowerSeries<mint>;
  int logN, n, nn;
  vector<mint> xs;
  vector<mint> buf;
  vector<mint *> gss;
  fps all, roots;

  void ntt(mint *a, int s) const {
    static fps buf2;
    buf2.resize(s);
    copy(a, a + s, buf2.data());
    buf2.ntt();
    copy(buf2.data(), buf2.data() + s, a);
  }
  void intt(mint *a, int s) const {
    static fps buf2;
    buf2.resize(s);
    copy(a, a + s, buf2.data());
    buf2.intt();
    copy(buf2.data(), buf2.data() + s, a);
  }

  SubproductTree(const vector<mint> &xs_) {
    n = xs_.size();
    for (logN = 0, nn = 1; nn < n; ++logN, nn <<= 1) {
    }
    roots.resize(logN + 1);
    for (int i = 0; i <= logN; i++) {
      int mod = mint::get_mod();
      roots[i] = mint{fps::ntt_pr()}.pow((mod - 1) >> i);
    }
    xs.assign(nn, 0U);
    memcpy(xs.data(), xs_.data(), n * sizeof(mint));
    buf.assign((logN + 1) * (nn << 1), 0U);
    gss.assign(nn << 1, nullptr);
    for (int h = 0; h <= logN; ++h)
      for (int u = 1 << h; u < 1 << (h + 1); ++u) {
        gss[u] =
            buf.data() + (h * (nn << 1) + ((u - (1 << h)) << (logN - h + 1)));
      }
    for (int i = 0; i < nn; ++i) {
      gss[nn + i][0] = -xs[i] + 1;
      gss[nn + i][1] = -xs[i] - 1;
    }
    if (nn == 1) gss[1][1] += 2;
    for (int h = logN; --h >= 0;) {
      const int m = 1 << (logN - h);
      for (int u = 1 << (h + 1); --u >= 1 << h;) {
        for (int i = 0; i < m; ++i)
          gss[u][i] = gss[u << 1][i] * gss[u << 1 | 1][i];
        memcpy(gss[u] + m, gss[u], m * sizeof(mint));
        intt(gss[u] + m, m);
        if (h > 0) {
          gss[u][m] -= 2;
          const mint a = roots[logN - h + 1];
          mint aa = 1;
          for (int i = m; i < m << 1; ++i) {
            gss[u][i] *= aa;
            aa *= a;
          };
          ntt(gss[u] + m, m);
        }
      }
    }
    all.resize(nn + 1);
    all[0] = 1;
    for (int i = 1; i < nn; ++i) all[i] = gss[1][nn + nn - i];
    all[nn] = gss[1][nn] - 1;
  }
  vector<mint> multiEval(const fps &fs) const {
    vector<mint> work0(nn), work1(nn), work2(nn);
    {
      const int m = max<int>(fs.size(), 1);
      auto invAll = all.inv(m);
      std::reverse(invAll.begin(), invAll.end());
      int mm;
      for (mm = 1; mm < m - 1 + nn; mm <<= 1) {
      }
      invAll.resize(mm, 0U);
      ntt(invAll.data(), invAll.size());
      vector<mint> ffs(mm, 0U);
      memcpy(ffs.data(), fs.data(), fs.size() * sizeof(mint));
      ntt(ffs.data(), ffs.size());
      for (int i = 0; i < mm; ++i) ffs[i] *= invAll[i];
      intt(ffs.data(), ffs.size());
      memcpy(((logN & 1) ? work1 : work0).data(), ffs.data() + m - 1,
             nn * sizeof(mint));
    }
    for (int h = 0; h < logN; ++h) {
      const int m = 1 << (logN - h);
      for (int u = 1 << h; u < 1 << (h + 1); ++u) {
        mint *hs = (((logN - h) & 1) ? work1 : work0).data() +
                   ((u - (1 << h)) << (logN - h));
        mint *hs0 = (((logN - h) & 1) ? work0 : work1).data() +
                    ((u - (1 << h)) << (logN - h));
        mint *hs1 = hs0 + (m >> 1);
        ntt(hs, m);
        for (int i = 0; i < m; ++i) work2[i] = gss[u << 1 | 1][i] * hs[i];
        intt(work2.data(), m);
        memcpy(hs0, work2.data() + (m >> 1), (m >> 1) * sizeof(mint));
        for (int i = 0; i < m; ++i) work2[i] = gss[u << 1][i] * hs[i];
        intt(work2.data(), m);
        memcpy(hs1, work2.data() + (m >> 1), (m >> 1) * sizeof(mint));
      }
    }
    work0.resize(n);
    return work0;
  }

  fps interpolate(const vector<mint> &ys) const {
    assert(static_cast<int>(ys.size()) == n);
    fps gs(n);
    for (int i = 0; i < n; ++i) gs[i] = all[n - (i + 1)] * (i + 1);
    const vector<mint> denoms = multiEval(gs);
    vector<mint> work(nn << 1, 0U);
    for (int i = 0; i < n; ++i) {
      assert(denoms[i] != 0);
      work[i << 1] = work[i << 1 | 1] = ys[i] / denoms[i];
    }
    for (int h = logN; --h >= 0;) {
      const int m = 1 << (logN - h);
      for (int u = 1 << (h + 1); --u >= 1 << h;) {
        mint *hs = work.data() + ((u - (1 << h)) << (logN - h + 1));
        for (int i = 0; i < m; ++i)
          hs[i] = gss[u << 1 | 1][i] * hs[i] + gss[u << 1][i] * hs[m + i];
        if (h > 0) {
          memcpy(hs + m, hs, m * sizeof(mint));
          intt(hs + m, m);
          const mint a = roots[logN - h + 1];
          mint aa = 1;
          for (int i = m; i < m << 1; ++i) {
            hs[i] *= aa;
            aa *= a;
          };
          ntt(hs + m, m);
        }
      }
    }
    intt(work.data(), nn);
    return {work.data() + nn - n, work.data() + nn};
  }
};
#line 2 "fps/fast-interpolate.hpp"

#include <vector>
using namespace std;

#line 2 "fps/formal-power-series.hpp"

template <typename mint>
struct FormalPowerSeries : vector<mint> {
  using vector<mint>::vector;
  using FPS = FormalPowerSeries;

  FPS &operator+=(const FPS &r) {
    if (r.size() > this->size()) this->resize(r.size());
    for (int i = 0; i < (int)r.size(); i++) (*this)[i] += r[i];
    return *this;
  }

  FPS &operator+=(const mint &r) {
    if (this->empty()) this->resize(1);
    (*this)[0] += r;
    return *this;
  }

  FPS &operator-=(const FPS &r) {
    if (r.size() > this->size()) this->resize(r.size());
    for (int i = 0; i < (int)r.size(); i++) (*this)[i] -= r[i];
    return *this;
  }

  FPS &operator-=(const mint &r) {
    if (this->empty()) this->resize(1);
    (*this)[0] -= r;
    return *this;
  }

  FPS &operator*=(const mint &v) {
    for (int k = 0; k < (int)this->size(); k++) (*this)[k] *= v;
    return *this;
  }

  FPS &operator/=(const FPS &r) {
    if (this->size() < r.size()) {
      this->clear();
      return *this;
    }
    int n = this->size() - r.size() + 1;
    if ((int)r.size() <= 64) {
      FPS f(*this), g(r);
      g.shrink();
      mint coeff = g.back().inverse();
      for (auto &x : g) x *= coeff;
      int deg = (int)f.size() - (int)g.size() + 1;
      int gs = g.size();
      FPS quo(deg);
      for (int i = deg - 1; i >= 0; i--) {
        quo[i] = f[i + gs - 1];
        for (int j = 0; j < gs; j++) f[i + j] -= quo[i] * g[j];
      }
      *this = quo * coeff;
      this->resize(n, mint(0));
      return *this;
    }
    return *this = ((*this).rev().pre(n) * r.rev().inv(n)).pre(n).rev();
  }

  FPS &operator%=(const FPS &r) {
    *this -= *this / r * r;
    shrink();
    return *this;
  }

  FPS operator+(const FPS &r) const { return FPS(*this) += r; }
  FPS operator+(const mint &v) const { return FPS(*this) += v; }
  FPS operator-(const FPS &r) const { return FPS(*this) -= r; }
  FPS operator-(const mint &v) const { return FPS(*this) -= v; }
  FPS operator*(const FPS &r) const { return FPS(*this) *= r; }
  FPS operator*(const mint &v) const { return FPS(*this) *= v; }
  FPS operator/(const FPS &r) const { return FPS(*this) /= r; }
  FPS operator%(const FPS &r) const { return FPS(*this) %= r; }
  FPS operator-() const {
    FPS ret(this->size());
    for (int i = 0; i < (int)this->size(); i++) ret[i] = -(*this)[i];
    return ret;
  }

  void shrink() {
    while (this->size() && this->back() == mint(0)) this->pop_back();
  }

  FPS rev() const {
    FPS ret(*this);
    reverse(begin(ret), end(ret));
    return ret;
  }

  FPS dot(FPS r) const {
    FPS ret(min(this->size(), r.size()));
    for (int i = 0; i < (int)ret.size(); i++) ret[i] = (*this)[i] * r[i];
    return ret;
  }

  // 前 sz 項を取ってくる。sz に足りない項は 0 埋めする
  FPS pre(int sz) const {
    FPS ret(begin(*this), begin(*this) + min((int)this->size(), sz));
    if ((int)ret.size() < sz) ret.resize(sz);
    return ret;
  }

  FPS operator>>(int sz) const {
    if ((int)this->size() <= sz) return {};
    FPS ret(*this);
    ret.erase(ret.begin(), ret.begin() + sz);
    return ret;
  }

  FPS operator<<(int sz) const {
    FPS ret(*this);
    ret.insert(ret.begin(), sz, mint(0));
    return ret;
  }

  FPS diff() const {
    const int n = (int)this->size();
    FPS ret(max(0, n - 1));
    mint one(1), coeff(1);
    for (int i = 1; i < n; i++) {
      ret[i - 1] = (*this)[i] * coeff;
      coeff += one;
    }
    return ret;
  }

  FPS integral() const {
    const int n = (int)this->size();
    FPS ret(n + 1);
    ret[0] = mint(0);
    if (n > 0) ret[1] = mint(1);
    auto mod = mint::get_mod();
    for (int i = 2; i <= n; i++) ret[i] = (-ret[mod % i]) * (mod / i);
    for (int i = 0; i < n; i++) ret[i + 1] *= (*this)[i];
    return ret;
  }

  mint eval(mint x) const {
    mint r = 0, w = 1;
    for (auto &v : *this) r += w * v, w *= x;
    return r;
  }

  FPS log(int deg = -1) const {
    assert(!(*this).empty() && (*this)[0] == mint(1));
    if (deg == -1) deg = (int)this->size();
    return (this->diff() * this->inv(deg)).pre(deg - 1).integral();
  }

  FPS pow(int64_t k, int deg = -1) const {
    const int n = (int)this->size();
    if (deg == -1) deg = n;
    if (k == 0) {
      FPS ret(deg);
      if (deg) ret[0] = 1;
      return ret;
    }
    for (int i = 0; i < n; i++) {
      if ((*this)[i] != mint(0)) {
        mint rev = mint(1) / (*this)[i];
        FPS ret = (((*this * rev) >> i).log(deg) * k).exp(deg);
        ret *= (*this)[i].pow(k);
        ret = (ret << (i * k)).pre(deg);
        if ((int)ret.size() < deg) ret.resize(deg, mint(0));
        return ret;
      }
      if (__int128_t(i + 1) * k >= deg) return FPS(deg, mint(0));
    }
    return FPS(deg, mint(0));
  }

  static void *ntt_ptr;
  static void set_fft();
  FPS &operator*=(const FPS &r);
  void ntt();
  void intt();
  void ntt_doubling();
  static int ntt_pr();
  FPS inv(int deg = -1) const;
  FPS exp(int deg = -1) const;
};
template <typename mint>
void *FormalPowerSeries<mint>::ntt_ptr = nullptr;

/**
 * @brief 多項式/形式的冪級数ライブラリ
 * @docs docs/fps/formal-power-series.md
 */
#line 7 "fps/fast-interpolate.hpp"

// https://github.com/hos-lyric/libra/blob/master/algebra/poly_998244353.cpp
// の多項式補間を手元で動くように改造
// xs が distinct じゃないと壊れる
template <typename mint>
struct SubproductTree {
  using fps = FormalPowerSeries<mint>;
  int logN, n, nn;
  vector<mint> xs;
  vector<mint> buf;
  vector<mint *> gss;
  fps all, roots;

  void ntt(mint *a, int s) const {
    static fps buf2;
    buf2.resize(s);
    copy(a, a + s, buf2.data());
    buf2.ntt();
    copy(buf2.data(), buf2.data() + s, a);
  }
  void intt(mint *a, int s) const {
    static fps buf2;
    buf2.resize(s);
    copy(a, a + s, buf2.data());
    buf2.intt();
    copy(buf2.data(), buf2.data() + s, a);
  }

  SubproductTree(const vector<mint> &xs_) {
    n = xs_.size();
    for (logN = 0, nn = 1; nn < n; ++logN, nn <<= 1) {
    }
    roots.resize(logN + 1);
    for (int i = 0; i <= logN; i++) {
      int mod = mint::get_mod();
      roots[i] = mint{fps::ntt_pr()}.pow((mod - 1) >> i);
    }
    xs.assign(nn, 0U);
    memcpy(xs.data(), xs_.data(), n * sizeof(mint));
    buf.assign((logN + 1) * (nn << 1), 0U);
    gss.assign(nn << 1, nullptr);
    for (int h = 0; h <= logN; ++h)
      for (int u = 1 << h; u < 1 << (h + 1); ++u) {
        gss[u] =
            buf.data() + (h * (nn << 1) + ((u - (1 << h)) << (logN - h + 1)));
      }
    for (int i = 0; i < nn; ++i) {
      gss[nn + i][0] = -xs[i] + 1;
      gss[nn + i][1] = -xs[i] - 1;
    }
    if (nn == 1) gss[1][1] += 2;
    for (int h = logN; --h >= 0;) {
      const int m = 1 << (logN - h);
      for (int u = 1 << (h + 1); --u >= 1 << h;) {
        for (int i = 0; i < m; ++i)
          gss[u][i] = gss[u << 1][i] * gss[u << 1 | 1][i];
        memcpy(gss[u] + m, gss[u], m * sizeof(mint));
        intt(gss[u] + m, m);
        if (h > 0) {
          gss[u][m] -= 2;
          const mint a = roots[logN - h + 1];
          mint aa = 1;
          for (int i = m; i < m << 1; ++i) {
            gss[u][i] *= aa;
            aa *= a;
          };
          ntt(gss[u] + m, m);
        }
      }
    }
    all.resize(nn + 1);
    all[0] = 1;
    for (int i = 1; i < nn; ++i) all[i] = gss[1][nn + nn - i];
    all[nn] = gss[1][nn] - 1;
  }
  vector<mint> multiEval(const fps &fs) const {
    vector<mint> work0(nn), work1(nn), work2(nn);
    {
      const int m = max<int>(fs.size(), 1);
      auto invAll = all.inv(m);
      std::reverse(invAll.begin(), invAll.end());
      int mm;
      for (mm = 1; mm < m - 1 + nn; mm <<= 1) {
      }
      invAll.resize(mm, 0U);
      ntt(invAll.data(), invAll.size());
      vector<mint> ffs(mm, 0U);
      memcpy(ffs.data(), fs.data(), fs.size() * sizeof(mint));
      ntt(ffs.data(), ffs.size());
      for (int i = 0; i < mm; ++i) ffs[i] *= invAll[i];
      intt(ffs.data(), ffs.size());
      memcpy(((logN & 1) ? work1 : work0).data(), ffs.data() + m - 1,
             nn * sizeof(mint));
    }
    for (int h = 0; h < logN; ++h) {
      const int m = 1 << (logN - h);
      for (int u = 1 << h; u < 1 << (h + 1); ++u) {
        mint *hs = (((logN - h) & 1) ? work1 : work0).data() +
                   ((u - (1 << h)) << (logN - h));
        mint *hs0 = (((logN - h) & 1) ? work0 : work1).data() +
                    ((u - (1 << h)) << (logN - h));
        mint *hs1 = hs0 + (m >> 1);
        ntt(hs, m);
        for (int i = 0; i < m; ++i) work2[i] = gss[u << 1 | 1][i] * hs[i];
        intt(work2.data(), m);
        memcpy(hs0, work2.data() + (m >> 1), (m >> 1) * sizeof(mint));
        for (int i = 0; i < m; ++i) work2[i] = gss[u << 1][i] * hs[i];
        intt(work2.data(), m);
        memcpy(hs1, work2.data() + (m >> 1), (m >> 1) * sizeof(mint));
      }
    }
    work0.resize(n);
    return work0;
  }

  fps interpolate(const vector<mint> &ys) const {
    assert(static_cast<int>(ys.size()) == n);
    fps gs(n);
    for (int i = 0; i < n; ++i) gs[i] = all[n - (i + 1)] * (i + 1);
    const vector<mint> denoms = multiEval(gs);
    vector<mint> work(nn << 1, 0U);
    for (int i = 0; i < n; ++i) {
      assert(denoms[i] != 0);
      work[i << 1] = work[i << 1 | 1] = ys[i] / denoms[i];
    }
    for (int h = logN; --h >= 0;) {
      const int m = 1 << (logN - h);
      for (int u = 1 << (h + 1); --u >= 1 << h;) {
        mint *hs = work.data() + ((u - (1 << h)) << (logN - h + 1));
        for (int i = 0; i < m; ++i)
          hs[i] = gss[u << 1 | 1][i] * hs[i] + gss[u << 1][i] * hs[m + i];
        if (h > 0) {
          memcpy(hs + m, hs, m * sizeof(mint));
          intt(hs + m, m);
          const mint a = roots[logN - h + 1];
          mint aa = 1;
          for (int i = m; i < m << 1; ++i) {
            hs[i] *= aa;
            aa *= a;
          };
          ntt(hs + m, m);
        }
      }
    }
    intt(work.data(), nn);
    return {work.data() + nn - n, work.data() + nn};
  }
};
Back to top page