Nyaan's Library

This documentation is automatically generated by online-judge-tools/verification-helper

View on GitHub

:heavy_check_mark: 二部グラフのフロー
(flow/flow-on-bipartite-graph.hpp)

二部グラフのフロー

使い方

Verified with

Code

#pragma once

#include "../atcoder/maxflow.hpp"

namespace BipartiteGraphImpl {
using namespace atcoder;
struct BipartiteGraph : mf_graph<long long> {
  int L, R, s, t;
  bool is_flow;

  explicit BipartiteGraph(int N, int M)
      : mf_graph<long long>(N + M + 2),
        L(N),
        R(M),
        s(N + M),
        t(N + M + 1),
        is_flow(false) {
    for (int i = 0; i < L; i++) mf_graph<long long>::add_edge(s, i, 1);
    for (int i = 0; i < R; i++) mf_graph<long long>::add_edge(i + L, t, 1);
  }

  int add_edge(int n, int m, long long cap = 1) override {
    assert(0 <= n && n < L);
    assert(0 <= m && m < R);
    return mf_graph<long long>::add_edge(n, m + L, cap);
  }

  long long flow() {
    is_flow = true;
    return mf_graph<long long>::flow(s, t);
  }

  vector<pair<int, int>> MaximumMatching() {
    if (!is_flow) flow();
    auto es = mf_graph<long long>::edges();
    vector<pair<int, int>> ret;
    for (auto &e : es) {
      if (e.flow > 0 && e.from != s && e.to != t) {
        ret.emplace_back(e.from, e.to - L);
      }
    }
    return ret;
  }

  // call after calclating flow !
  pair<vector<int>, vector<int>> MinimumVertexCover() {
    if (!is_flow) flow();
    auto colored = PreCalc();
    vector<int> nl, nr;
    for (int i = 0; i < L; i++)
      if (!colored[i]) nl.push_back(i);
    for (int i = 0; i < R; i++)
      if (colored[i + L]) nr.push_back(i);
    return make_pair(nl, nr);
  }

  // call after calclating flow !
  pair<vector<int>, vector<int>> MaximumIndependentSet() {
    if (!is_flow) flow();
    auto colored = PreCalc();
    vector<int> nl, nr;
    for (int i = 0; i < L; i++)
      if (colored[i]) nl.push_back(i);
    for (int i = 0; i < R; i++)
      if (!colored[i + L]) nr.push_back(i);
    return make_pair(nl, nr);
  }

  vector<pair<int, int>> MinimumEdgeCover() {
    if (!is_flow) flow();
    auto es = MaximumMatching();
    vector<bool> useL(L), useR(R);
    for (auto &p : es) {
      useL[p.first] = true;
      useR[p.second] = true;
    }
    for (auto &e : mf_graph<long long>::edges()) {
      if (e.flow > 0 || e.from == s || e.to == t) continue;
      if (useL[e.from] == false || useR[e.to - L] == false) {
        es.emplace_back(e.from, e.to - L);
        useL[e.from] = useR[e.to - L] = true;
      }
    }
    return es;
  }

 private:
  vector<bool> PreCalc() {
    vector<vector<int>> ag(L + R);
    vector<bool> used(L, false);
    for (auto &e : mf_graph<long long>::edges()) {
      if (e.from == s || e.to == t) continue;
      if (e.flow > 0) {
        ag[e.to].push_back(e.from);
        used[e.from] = true;
      } else {
        ag[e.from].push_back(e.to);
      }
    }
    vector<bool> colored(L + R, false);
    auto dfs = [&](auto rc, int cur) -> void {
      for (auto &d : ag[cur]) {
        if (!colored[d]) colored[d] = true, rc(rc, d);
      }
    };
    for (int i = 0; i < L; i++)
      if (!used[i]) colored[i] = true, dfs(dfs, i);
    return colored;
  }
};

}  // namespace BipartiteGraphImpl

using BipartiteGraphImpl::BipartiteGraph;

/**
 * @brief 二部グラフのフロー
 * @docs docs/flow/flow-on-bipartite-graph.md
 */
#line 2 "flow/flow-on-bipartite-graph.hpp"

#line 1 "atcoder/maxflow.hpp"



#include <algorithm>
#include <cassert>
#include <limits>
#include <queue>
#include <vector>

#line 1 "atcoder/internal_queue.hpp"



#line 5 "atcoder/internal_queue.hpp"

namespace atcoder {

namespace internal {

template <class T> struct simple_queue {
    std::vector<T> payload;
    int pos = 0;
    void reserve(int n) { payload.reserve(n); }
    int size() const { return int(payload.size()) - pos; }
    bool empty() const { return pos == int(payload.size()); }
    void push(const T& t) { payload.push_back(t); }
    T& front() { return payload[pos]; }
    void clear() {
        payload.clear();
        pos = 0;
    }
    void pop() { pos++; }
};

}  // namespace internal

}  // namespace atcoder


#line 11 "atcoder/maxflow.hpp"

namespace atcoder {

template <class Cap> struct mf_graph {
  public:
    mf_graph() : _n(0) {}
    mf_graph(int n) : _n(n), g(n) {}

    virtual int add_edge(int from, int to, Cap cap) {
        assert(0 <= from && from < _n);
        assert(0 <= to && to < _n);
        assert(0 <= cap);
        int m = int(pos.size());
        pos.push_back({from, int(g[from].size())});
        int from_id = int(g[from].size());
        int to_id = int(g[to].size());
        if (from == to) to_id++;
        g[from].push_back(_edge{to, to_id, cap});
        g[to].push_back(_edge{from, from_id, 0});
        return m;
    }

    struct edge {
        int from, to;
        Cap cap, flow;
    };

    edge get_edge(int i) {
        int m = int(pos.size());
        assert(0 <= i && i < m);
        auto _e = g[pos[i].first][pos[i].second];
        auto _re = g[_e.to][_e.rev];
        return edge{pos[i].first, _e.to, _e.cap + _re.cap, _re.cap};
    }
    std::vector<edge> edges() {
        int m = int(pos.size());
        std::vector<edge> result;
        for (int i = 0; i < m; i++) {
            result.push_back(get_edge(i));
        }
        return result;
    }
    void change_edge(int i, Cap new_cap, Cap new_flow) {
        int m = int(pos.size());
        assert(0 <= i && i < m);
        assert(0 <= new_flow && new_flow <= new_cap);
        auto& _e = g[pos[i].first][pos[i].second];
        auto& _re = g[_e.to][_e.rev];
        _e.cap = new_cap - new_flow;
        _re.cap = new_flow;
    }

    Cap flow(int s, int t) {
        return flow(s, t, std::numeric_limits<Cap>::max());
    }
    Cap flow(int s, int t, Cap flow_limit) {
        assert(0 <= s && s < _n);
        assert(0 <= t && t < _n);
        assert(s != t);

        std::vector<int> level(_n), iter(_n);
        internal::simple_queue<int> que;

        auto bfs = [&]() {
            std::fill(level.begin(), level.end(), -1);
            level[s] = 0;
            que.clear();
            que.push(s);
            while (!que.empty()) {
                int v = que.front();
                que.pop();
                for (auto e : g[v]) {
                    if (e.cap == 0 || level[e.to] >= 0) continue;
                    level[e.to] = level[v] + 1;
                    if (e.to == t) return;
                    que.push(e.to);
                }
            }
        };
        auto dfs = [&](auto self, int v, Cap up) {
            if (v == s) return up;
            Cap res = 0;
            int level_v = level[v];
            for (int& i = iter[v]; i < int(g[v].size()); i++) {
                _edge& e = g[v][i];
                if (level_v <= level[e.to] || g[e.to][e.rev].cap == 0) continue;
                Cap d =
                    self(self, e.to, std::min(up - res, g[e.to][e.rev].cap));
                if (d <= 0) continue;
                g[v][i].cap += d;
                g[e.to][e.rev].cap -= d;
                res += d;
                if (res == up) return res;
            }
            level[v] = _n;
            return res;
        };

        Cap flow = 0;
        while (flow < flow_limit) {
            bfs();
            if (level[t] == -1) break;
            std::fill(iter.begin(), iter.end(), 0);
            Cap f = dfs(dfs, t, flow_limit - flow);
            if (!f) break;
            flow += f;
        }
        return flow;
    }

    std::vector<bool> min_cut(int s) {
        std::vector<bool> visited(_n);
        internal::simple_queue<int> que;
        que.push(s);
        while (!que.empty()) {
            int p = que.front();
            que.pop();
            visited[p] = true;
            for (auto e : g[p]) {
                if (e.cap && !visited[e.to]) {
                    visited[e.to] = true;
                    que.push(e.to);
                }
            }
        }
        return visited;
    }

  private:
    int _n;
    struct _edge {
        int to, rev;
        Cap cap;
    };
    std::vector<std::pair<int, int>> pos;
    std::vector<std::vector<_edge>> g;
};

}  // namespace atcoder


#line 4 "flow/flow-on-bipartite-graph.hpp"

namespace BipartiteGraphImpl {
using namespace atcoder;
struct BipartiteGraph : mf_graph<long long> {
  int L, R, s, t;
  bool is_flow;

  explicit BipartiteGraph(int N, int M)
      : mf_graph<long long>(N + M + 2),
        L(N),
        R(M),
        s(N + M),
        t(N + M + 1),
        is_flow(false) {
    for (int i = 0; i < L; i++) mf_graph<long long>::add_edge(s, i, 1);
    for (int i = 0; i < R; i++) mf_graph<long long>::add_edge(i + L, t, 1);
  }

  int add_edge(int n, int m, long long cap = 1) override {
    assert(0 <= n && n < L);
    assert(0 <= m && m < R);
    return mf_graph<long long>::add_edge(n, m + L, cap);
  }

  long long flow() {
    is_flow = true;
    return mf_graph<long long>::flow(s, t);
  }

  vector<pair<int, int>> MaximumMatching() {
    if (!is_flow) flow();
    auto es = mf_graph<long long>::edges();
    vector<pair<int, int>> ret;
    for (auto &e : es) {
      if (e.flow > 0 && e.from != s && e.to != t) {
        ret.emplace_back(e.from, e.to - L);
      }
    }
    return ret;
  }

  // call after calclating flow !
  pair<vector<int>, vector<int>> MinimumVertexCover() {
    if (!is_flow) flow();
    auto colored = PreCalc();
    vector<int> nl, nr;
    for (int i = 0; i < L; i++)
      if (!colored[i]) nl.push_back(i);
    for (int i = 0; i < R; i++)
      if (colored[i + L]) nr.push_back(i);
    return make_pair(nl, nr);
  }

  // call after calclating flow !
  pair<vector<int>, vector<int>> MaximumIndependentSet() {
    if (!is_flow) flow();
    auto colored = PreCalc();
    vector<int> nl, nr;
    for (int i = 0; i < L; i++)
      if (colored[i]) nl.push_back(i);
    for (int i = 0; i < R; i++)
      if (!colored[i + L]) nr.push_back(i);
    return make_pair(nl, nr);
  }

  vector<pair<int, int>> MinimumEdgeCover() {
    if (!is_flow) flow();
    auto es = MaximumMatching();
    vector<bool> useL(L), useR(R);
    for (auto &p : es) {
      useL[p.first] = true;
      useR[p.second] = true;
    }
    for (auto &e : mf_graph<long long>::edges()) {
      if (e.flow > 0 || e.from == s || e.to == t) continue;
      if (useL[e.from] == false || useR[e.to - L] == false) {
        es.emplace_back(e.from, e.to - L);
        useL[e.from] = useR[e.to - L] = true;
      }
    }
    return es;
  }

 private:
  vector<bool> PreCalc() {
    vector<vector<int>> ag(L + R);
    vector<bool> used(L, false);
    for (auto &e : mf_graph<long long>::edges()) {
      if (e.from == s || e.to == t) continue;
      if (e.flow > 0) {
        ag[e.to].push_back(e.from);
        used[e.from] = true;
      } else {
        ag[e.from].push_back(e.to);
      }
    }
    vector<bool> colored(L + R, false);
    auto dfs = [&](auto rc, int cur) -> void {
      for (auto &d : ag[cur]) {
        if (!colored[d]) colored[d] = true, rc(rc, d);
      }
    };
    for (int i = 0; i < L; i++)
      if (!used[i]) colored[i] = true, dfs(dfs, i);
    return colored;
  }
};

}  // namespace BipartiteGraphImpl

using BipartiteGraphImpl::BipartiteGraph;

/**
 * @brief 二部グラフのフロー
 * @docs docs/flow/flow-on-bipartite-graph.md
 */
Back to top page