動的Binary Indexed Tree
(data-structure/dynamic-binary-indexed-tree.hpp)
- View this file on GitHub
- Last update: 2021-08-10 23:14:36+09:00
- Include:
#include "data-structure/dynamic-binary-indexed-tree.hpp"
動的Binary Indexed Tree
概要
Binary Indexed Treeを動的にしたライブラリ。
Binary Indexed Tree(BIT)は区間和と一点加算が配列長を$n$として時間計算量$\mathrm{O}(\log n)$で出来るが、空間計算量が$\mathrm{O}(n)$になるため$n$がメモリサイズより大きいときに使用できない。そこで、配列の代わりに連想配列を利用することで空間計算量を(クエリ数を$q$として)$\mathrm{O}(q \log n)$で抑えたものが動的Binary Indexed Treeである。
使い方
-
DynamicBinaryIndexedTree<T>(int n)
: $[0, n]$を添え字の値として取れるBITを作成する。 -
add(k, x)
: k番目の要素にxを加算する。 -
operator[](k)
: k番目の要素を取得する。 -
sum(k)
: 区間[0, k)
の和を取得する。 -
sum(l, r)
: 区間[l, r)
の和を取得する。 -
operator[](k)
:k
番目の要素の値を取得する。 -
lower_bound(w)
: 要素が全て非負の時、[0, k]
の区間和がw以上となるような最小のkを求める。
Depends on
Required by
Verified with
Code
#pragma once
#include "hash-map-variable-length.hpp"
template <typename S, typename T>
struct DynamicFenwickTree {
S N;
HashMap<S, T> data;
explicit DynamicFenwickTree() = default;
explicit DynamicFenwickTree(S size) { N = size + 1; }
void add(S k, T x) {
for (++k; k < N; k += k & -k) data[k] += x;
}
// [0, k)
T sum(S k) const {
if (k < 0) return 0;
T ret = T();
for (; k > 0; k -= k & -k) {
const T* p = data.find(k);
ret += p ? *p : T();
}
return ret;
}
// [a, b)
T sum(S a, S b) const { return sum(b) - sum(a); }
T operator[](S k) const { return sum(k + 1) - sum(k); }
S lower_bound(T w) {
if (w <= 0) return 0;
S x = 0;
for (S k = 1 << __lg(N); k; k >>= 1) {
if (x + k <= N - 1 && data[x + k] < w) {
w -= data[x + k];
x += k;
}
}
return x;
}
};
/**
* @brief 動的Binary Indexed Tree
* @docs docs/data-structure/dynamic-binary-indexed-tree.md
*/
#line 2 "data-structure/dynamic-binary-indexed-tree.hpp"
#line 2 "data-structure/hash-map-variable-length.hpp"
template <typename Key, typename Val>
struct HashMap {
using u32 = uint32_t;
using u64 = uint64_t;
u32 cap, s;
vector<Key> keys;
vector<Val> vals;
vector<bool> flag;
u64 r;
u32 shift;
Val DefaultValue;
static u64 rng() {
u64 m = chrono::duration_cast<chrono::nanoseconds>(
chrono::high_resolution_clock::now().time_since_epoch())
.count();
m ^= m >> 16;
m ^= m << 32;
return m;
}
void reallocate() {
cap <<= 1;
vector<Key> k(cap);
vector<Val> v(cap);
vector<bool> f(cap);
u32 sh = shift - 1;
for (int i = 0; i < (int)flag.size(); i++) {
if (flag[i]) {
u32 hash = (u64(keys[i]) * r) >> sh;
while (f[hash]) hash = (hash + 1) & (cap - 1);
k[hash] = keys[i];
v[hash] = vals[i];
f[hash] = 1;
}
}
keys.swap(k);
vals.swap(v);
flag.swap(f);
--shift;
}
explicit HashMap()
: cap(8),
s(0),
keys(cap),
vals(cap),
flag(cap),
r(rng()),
shift(64 - __lg(cap)),
DefaultValue(Val()) {}
Val& operator[](const Key& i) {
u32 hash = (u64(i) * r) >> shift;
while (true) {
if (!flag[hash]) {
if (s + s / 4 >= cap) {
reallocate();
return (*this)[i];
}
keys[hash] = i;
flag[hash] = 1;
++s;
return vals[hash] = DefaultValue;
}
if (keys[hash] == i) return vals[hash];
hash = (hash + 1) & (cap - 1);
}
}
// exist -> return pointer of Val
// not exist -> return nullptr
const Val* find(const Key& i) const {
u32 hash = (u64(i) * r) >> shift;
while (true) {
if (!flag[hash]) return nullptr;
if (keys[hash] == i) return &(vals[hash]);
hash = (hash + 1) & (cap - 1);
}
}
// return vector< pair<const Key&, val& > >
vector<pair<Key, Val>> enumerate() const {
vector<pair<Key, Val>> ret;
for (u32 i = 0; i < cap; ++i)
if (flag[i]) ret.emplace_back(keys[i], vals[i]);
return ret;
}
int size() const { return s; }
// set default_value
void set_default(const Val& val) { DefaultValue = val; }
};
/**
* @brief Hash Map(可変長版)
* @docs docs/data-structure/hash-map.md
*/
#line 4 "data-structure/dynamic-binary-indexed-tree.hpp"
template <typename S, typename T>
struct DynamicFenwickTree {
S N;
HashMap<S, T> data;
explicit DynamicFenwickTree() = default;
explicit DynamicFenwickTree(S size) { N = size + 1; }
void add(S k, T x) {
for (++k; k < N; k += k & -k) data[k] += x;
}
// [0, k)
T sum(S k) const {
if (k < 0) return 0;
T ret = T();
for (; k > 0; k -= k & -k) {
const T* p = data.find(k);
ret += p ? *p : T();
}
return ret;
}
// [a, b)
T sum(S a, S b) const { return sum(b) - sum(a); }
T operator[](S k) const { return sum(k + 1) - sum(k); }
S lower_bound(T w) {
if (w <= 0) return 0;
S x = 0;
for (S k = 1 << __lg(N); k; k >>= 1) {
if (x + k <= N - 1 && data[x + k] < w) {
w -= data[x + k];
x += k;
}
}
return x;
}
};
/**
* @brief 動的Binary Indexed Tree
* @docs docs/data-structure/dynamic-binary-indexed-tree.md
*/